Ice Cream

Cookie Dough (CD) CD or V
Strawberry (S) Many or Few
Chocolate (C) C or V
Vanilla (V) More or Less
 S or V
 Few or Many

\[P = (X, \leq) \]
\[X = \{ \text{CD, S, C, V} \} \]
\[x \preceq y \text{ if we like } y \text{ more than } x \]
\[V \preceq CD \]
\[V \preceq C \]
\[S \preceq V \]

Suppose we surveyed on CD vs C. What are the possibilities we could get?

\[C \preceq CD \]
\[CD \preceq C \]

Linear Extension

Let \(P = (X, \leq) \) be a poset.
A linear extension of \(P \) is a poset \(L = (X, \leq') \)
such that
\[\forall x, y \in X, \quad x \leq y \Rightarrow x \leq' y \]

Theorem
Let \(P = (X, \leq) \) be a finite poset.
P has a linear extension.

"Proof"
If \(P \) is a lattice we are done.
Otherwise, \(P \) has incomparable elements.
In particular, call them \(x, y \).
From \(P = (X, \leq) \) we construct a new poset
\(L = (X, \leq') \) in the following way:
\[\forall s, t \in X \]
if \(s \leq t \) then add \(s \leq' t \) to \(L \)
if \(s \leq y \) and \(x \leq t \) add \(s \leq' t \) to \(L \)
I claim that \(L = (X, \leq') \) is a poset that
extends \(P = (X, \leq) \).
The first part guarantees \(\leq' \) extends \(\leq \)
The second part guarantees \(y \leq' x \) in \(L \)
(take \(s = y \), \(t = x \))
\(L = (X, \leq') \) has one fewer incomparable pairs than \(P \).
Repeat...
$L = (X, \leq)$ will be a linear extension.

Realizers

Proposition
Let $P = (X, \leq)$ be a finite poset. Consider $x \neq y \in X$.
If $x \leq y$ in all linear extensions, then $x \leq y$ in P.
If $x \leq y$ in one linear extension and $y \leq x$ in another
then x and y are incomparable in P.

"Proof"

Contrapositive
Case 1: x and y incomparable
Case 2: $y \leq x$ in P

Suppose x and y comparable $(x \leq y)$ in P.
$x \leq y$ in all linear extensions.

How to reconstruct poset from all linear extensions?
Consider all pairs (x, y) of elements
If $x \leq y$ in all linear extensions
then $x \leq y$ in P.
Otherwise x and y are incomparable in P.
Show all of the linear extensions of the poset \(P = (2^{\{0,1\}}, \subseteq) \).

\[X = \{ \emptyset, \{0\}, \{1\}, \{0,1\} \} \]
Show all of the linear extensions of the following poset.