Throughout class today, we refer to the following examples:

Ex. 1

![Graph](image1)

Ex. 2

![Graph](image2)

If we have a path (or walk) that starts at \(u \) and ends at \(v \),

\[
(u, v) - \text{path} \\
(u, v) - \text{walk}
\]

Proposition

Let \(G \) be a graph and \(u, v \in V(G) \). If there is a \((u,v)\)-walk in \(G \), then there is a \((u,v)\)-path in \(G \).

Proof

\[
W = (u, \ldots, \ldots, \ldots, v)
\]

Suppose a vertex \(x \) is repeated

\[
W = (u, \ldots, ?, x, ?, \ldots, ? , x, ?, \ldots, v)
\]

\[
W = (u, \ldots, ? , x, x, ?, \ldots, v)
\]

Repeat until no repeated vertices remain.

We have a \((u, v)\)-path.

Examples

Consider \((1, 4)\)-walk
(Ex 1)
(1, 9, 2, 5, 3, 9, 2, 4)

(1, 9, 2, 4)

is a (1, 4)-path

Connected - To
Let G be a graph and u, v ∈ V(G).
We say u is connected-to v if there is a (u,v)-path in G.

Examples:
1, 4 are connected
1, 2 are connected
3, 3 is connected
4, 8 are not connected
7, 9 are not connected

Properties
Let u, v, w ∈ V(G) be vertices
1. u is connected to u (reflexive)
2. If u is connected-to v then
v is connected-to u. (symmetric)
3. If u is connected-to v and v is connected-to w
then u is connected-to w. (transitive)

Connected
A graph G is called connected if for all pairs of vertices (x, y) ∈ V(G), x is connected-to y.

Examples
Ex 1 is not connected
Ex 2 is connected
Components (Connected Components)
A component \(C \) of a graph \(G \) is a subgraph of \(G \) that is:
1) \(C \) is connected
2) \(\forall x \in C \), there is no vertex \(y \in G - C \) such that \(x \sim y \).

Cut Vertex/Edge
Let \(G \) be a graph.
\(v \in V(G) \) is a cut vertex of \(G \) if \(G - v \) has more components than \(G \).
\(e \in E(G) \) is a cut edge of \(G \) if \(G - e \) has more components than \(G \).

Cycle
A cycle is a walk of at least length three, where the first and last vertex are the same and no other vertices are repeated.

Examples:
(Ex 1) \((1, 2, 9, 1)\) is a cycle
(1, 9, 3, 5, 2, 4, 6, 1) is a cycle
(1, 2, 4) is not a cycle
(1, 2, 1) is not a cycle

Ex 2 has no cycles.

Tree
A tree is a connected, acyclic graph.

Examples

Ex 1 is not a tree
Ex 2 is a tree.