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Another example of Proof by Minimal Counter Example:

Claim:   Every integer  7 can be written as   where  and  are positive integers

PMCE:  Suppose the claim is not true.  Let  be the smallest integer such that  and  

cannot be written as  where  and  are positive integers.  (i.e.   is the minimum 

counter-example.)   This means all integers  where  can be written as 

In this proof we will begin by showing that  cannot be 7 or 8

We see that 7 = 2*2 + 3*1, so k  7

We see that 8 = 2*1 + 3*2, so k  8

Thus k  9

Since k  9,    k-2   7 ..... so 7  k-2 < k

Since k is the minimum counter-example, k-2 is not a counter-example.

Thus    for some positive integers  and 

But that means  , so k is not a counter-example at all   

Therefore the claim is true.

This proof may elicit a “where did that come from?” reaction ... it seems like there is no 

motivation for establishing that , and even less reason for looking at .  Let me try 

to fill in a bit of the thinking that goes on here.

We can start by looking at the thing we are trying to prove, and how we might attack it.  

Remember, in PMCE we are going to have two things to work with: 

- the claim is false for the minimum counter-example k

- the claim is true for all members of the set that are < k

and from these we will create a contradiction.



We are trying to prove that every integer   7 can be written as  , and we know that 

we are going to be supposing the existence of a minimum counter-example .  We can guess 

that our contradiction is going to be that the (supposed) minimum counter-example  is not a 

counter-example at all (this is very often the contradiction that we reach).  We will probably 

do this by finding a way to write  as   for some positive integers   and .  We 

will also be using the knowledge that since  is the minimum counter-example, each value

 in the set can be written as .  for some positive integers    and  

So we ask “How can we use the information that numbers   can be written as   to 

show that  can also be written in this way?”  The numbers that are  are

 etc. 

Let’s think about     We know it can be written as  for some positive 

integers  and .  This gives us  ..... but that looks like a dead end.  There’s 

no easy way to get rid of the .  

So now we might try thinking about .  We know  for some positive 

integers  and  (we know this because  is not a counterexample).  This gives us

 .... which is great because we can rewrite it as  .

Now we are onto something.  If we can be sure that   can be written as

, then k is not a counter-example.

But remember, we need  to be a member of the set we are dealing with, and that set 

starts at 7.  So we need    7 ..... which means k   9.  This means that our logic about 

relating  to  can only be applied for values  9.  For the values in the set that are < 9  

(ie 7 and 8) we need to prove that they can be written as   in some other way.  

Fortunately, it is easy to prove these facts directly: 7 = 2*2 + 3*1   and 8 = 2*1 + 3*2

Now let’s revisit the proof and annotate it.

Claim :  all integers  7 can be written as  where a and b are positive integers.

PMCE:  Assume  is the minimal counter-example    (applying the well-ordering principle)

 7 = 2*2 + 3*1   and 8 = 2*1 + 3*2  (direct proof of the claim for these small values)

        (establishing the least possible value for k)

(establishing that k-2 is in the set)



   for some a and b   (because k is the minimum counter-example)

  is not a counter-example   

Thus the assumption that the claim is false has led to a contradiction.

 the claim is true



<Is this theorem really interesting?  Who cares that we can write almost all positive integers 

as  for some positive integers  and ?  Well, it turns out that this type of result is 

important in robotics.  Some machines have limits on their movement, due to the way they 

are constructed.  We can certainly imagine a robot that can take a step of length 2, or a step 

of length 3, but no other length of step.  This theorem proves that the robot can move forward

any exact distance  7 with some combination of 2-steps and 3-steps.  

Note that the problem changes if we allow  and  to possibly have the value 0 – this might 

be more realistic for the robot application.>

PMCE is a form of Proof by Contradiction, but it is also very closely related to Proof by 

Induction.   In both PMCE and PBI we use the assumption that the claim is true for small 

values to prove that it is also true for large values.

I often find that PMCE is easier than PBI because it actually gives us more to work with: we 

have the knowledge that the claim is true up to  (which is what we have in PBI) and we 

also have the assumption that the claim is false for  (which is not usually part of PBI).  

Putting those things together to find a contradiction is often easier than constructing an 

inductive proof that the claim is true for .

However, it is a matter of choice.  Both proof techniques are valid – you should become 

comfortable with both.  You will eventually find your own preference.

Exercises:   

1.  Use PMCE to prove that all integers  11 can be written as  where  and  are 

positive integers

2.  Use PMCE to prove that all integers  29 can be written as  where  and  are 

positive integers.

3.  Based on the proof we worked out above and the previous 2 exercises, what you think is 

the largest integer that cannot be written as   where  and  are positive integers? 

Prove that your answer is correct.

4.  Using the definition of even integers (an integer  is even if it can be written as  

where  is an integer) and the definition of odd integers (an integer  is odd if it can be 

written as  where  is an integer), use PMCE to prove that every element of

 is either even or odd.



Function Composition

We reviewed the concept of function composition.

Let f : A  B   and   g : B  C   be functions  (ie. f is a function from set A to set B, and g is a 

function from set B to set C) then we write the composition of g and f as   g  f  .  g  f is a 

function from A to C (in notation g  f : A  C) such that  a  A, (g  f) (a) = g(f(a))

In plain English, when we see  g  f  we just have to remember that it means, “apply f, then 

apply g to the result of that”.  The key thing to remember is that the first function we apply is 

the last one listed.

Example :  let  be defined by   and let  be defined by

Consider   g  f (5).  We know this is equivalent to .  Since , our 

answer is , which is 16.  But now consider  f  g(5)  ... this equals  , which is

 ... so the answer is 13.  This demonstrates that  g  f   and  f  g  are not the same.

Note that when  g  f is well-defined,  f  g  may not be defined at all.  To compose two 

functions, the “target set” of the first one we apply must match the “input set” of the second 

one we apply.

Here’s an example:   A = {1,2,3}, B = {Kingston, Ottawa, Beijing, Damascus}, C = {bananas, 

strawberries, oranges, grapes}     Now we can create a function      and a function

    (the details of the functions are not important) and we know we can compose 

with   –  that is, we know  is well-defined.   takes any element of A as input and 

returns an element of B, and then  takes that element of B and returns an element of C.   It 

makes perfect sense to think of  as a function that maps A to C.  We can write

 .  However   is not defined, since  produces elements of C as output,

and  can only be applied to elements of A.

Let’s expand on this idea a bit.   Suppose we have two sets A and B, and two functions

 and    .   Now we are guaranteed that    and    are both 

well-defined.  We can write     and .  Make sure you 

understand why this is true.

And one step further.   Let A be a set and let  be a function  .   It should be clear 

that    is also a function from A to A ... and it is reasonable to write   as  



To illustrate this, consider the function  defined by 

Then

 

In the same way, we can define    and 

so on.

Exercise:  prove that   

By this point it should be clear that composition gives us a way to combine functions to create

new functions, and it is similar in some ways – and different in some ways – to the way that 

we use arithmetic operations to combine numbers to create new numbers.  It may seem 

restrictive that there exist functions that cannot be composed with each other, but this is 

actually an indication that the set of all functions is more complex than the set of all numbers.

The idea of using  to represent the operation of composing a function with itself might 

make us wonder if we can extend this notation to using non-positive integers for .  For 

example, can we come up with a meaningful definition for  ?   What about  or

 ?   It turns out that sometimes we can … as we will see when we start to study the 

class of functions called permutations.


