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Now on to permutations.  We’ve all seen the word “permutation” before, usually in the 

context of counting the number of different linear arrangements of n distinct objects.  When 

we do that calculation, we ignore the details of the individual permutations we are counting.  

For the next couple of classes we are going to define the concept of a permutation precisely, 

using our established understanding of relations and functions.  We’ll discuss the rudiments 

of a system of mathematics in which permutations are the fundamental objects.  The idea of 

creating meaningful mathematical systems for things that are not numbers is of fundamental 

importance in discrete mathematics.

Definition:  A permutation is a bijection from a set to itself.   

For example, let the set A = {a, red, 3, }   One permutation of A is the bijection defined by the 

ordered pairs { (a,3), (red,a), (3, ), ( , red) }    --- make sure that you agree that this is a 

bijection.

Note that the set on which the permutations are based does not need to be a set that has a 

natural order (such as {1,2,3,4} or {a,b,c,d} ).  In fact he set can be anything – the set A in the 

example just given is a demonstration of that: there is no natural order for this set, but we can 

still define permutations of it ... in fact there are 4! permutations of this set, because that is the 

number of bijections from A to itself.

However most of our representations of permutations are based on the idea of choosing some

particular order of the elements of the set as the “normal” or “natural” or “agreed-on” order 

of the set – then we describe permutations based on how they differ from the natural order of 

the set.

When we are studying permutations the objects in the set don’t usually matter – all that really

matters is the size of the set.  For this reason, when we talk about permutations the set A is 

usually just {1, 2, 3, ..., n} for some value of n.  This is handy because we don’t have to think 

too hard to come up with a natural order of the set!

We use  to represent the set of all permutations of the set {1, 2, 3, ..., n}

One of the first questions we can ask is, what is | |?  We already know the answer:  The 

number of ways to create an ordered pair (1, x )  (where x represents an element of {1, 2, ..., n})

is n.  For each of those there are n-1 ways to create an ordered pair (2, y) ... and so on.  The 

total number of bijections we can build is n!, so  



Consider the permutation of {1,2,3,4} defined by { (1,4), (2,1), (3,3) (4,2) }  Notice that under 

this function, 3 maps to itself.  This is perfectly fine.  In fact, there is a permutation that 

changes nothing:  f(x) = x for all x.  For {1,2,3,4} the ordered pairs for this permutation are 

{(1,1), (2,2), (3,3), (4,4)}.  This is called the identity permutation, and we represent it with the 

Greek letter iota which looks like this: .   It’s basically i without the dot.

In fact we almost always use Greek letters to name permutations :  (pi),  (sigma), and  

(tau) are among the favourites.

Permutations can be represented in a variety of ways.  So far we have just listed the ordered 

pairs, but we can also use an n-by-n matrix, a diagram that shows the mapping of the set onto

itself, or a 2-by-n matrix.   For example, the permutation { (1,4), (2,1), (3,3) (4,2) } can also be 

represented as

in which each row corresponds to the first element in one of the ordered pairs, and each 

column corresponds to the second element.  A “1” in the matrix indicates that the elements 

represented by the row and the column form an ordered pair.  For example, there is a “1” in 

the second row and first column, so we know (2,1) is one of the ordered pairs in the 

permutation.

As was mentioned in class, we could also use the columns to represent the first elements of 

the pairs and the rows to represent the second elements of the pairs.  This would transpose 

the matrix.



We can also draw a diagram to represent the permutation.

The 2-by-n matrix representation of this permutation looks like this:

in which each column represents one of the ordered pairs in the permutation.

It’s important to understand that each of these representations contains exactly the same 

information (they define the same permutation) and that if we are given any one of them we 

can construct all the others.

If we look at the 2-by-n matrix representation for different members of    such as 

     and          and     

we can see that the first line is always the same.  So we can leave it out!  We represent those 

permutations by

     and         and    

I will call this the standard notation for a permutation of {1, ..., n} because it is used very 

widely ... but as we will see, there is another notation that is often more useful in practice.



Remember that a permutation is a function, so we can use it as one ... the “input” is a 

position, and the “output” is the value that occupies that position.   So if   = , 

we can say , , etc.

Composing permutations is just like composing other functions.  If  and  are permutations 

of {1, ..., n}  we can write  to represent the result of applying  (as a function) and then 

applying 

For example, let  and  ... what is    ?

We can work it out:  , so we get

and look ... the result is a permutation!   Exercise: Try to prove that the composition of two 

permutations will always be a permutation.1

We can create a diagram to visualize the composition of permutations.  Using the same two 

permutations  and  as in the previous example we get the figure on the next page:

1 Hint: prove a broader statement: the composition of two bijections will always be a bijection.  The result for 
permutations follows automatically since every permutation is a bijection.



This diagram illustrates    .   To see this, try starting at some position x in the first 

column (for example, 3) and follow the arrows to the last column (starting with 3, we end up 

on 2) ... and find that this corresponds exactly to .

We can also just think of the operation of a permutation as “turns x into y”, so we can 

interpret  as “  turns 3 into 4, then  turns 4 into 2”


