
20200116

Remember that represents the set of all permutations of {1, 2, ... n}

There are some basic facts about that we need to have in hand:

1. Closure: If and then

2. Associativity: If and and then

3. Identity Element: There is a permutation such that

4. Inverse: If then and

Property 1 says that the composition of two permutations is another permutation. This

sounds trivial but it is our first look at a very important concept: closure. When we apply an

operation to two elements of a set and always get another element of the same set, we say

that set is closed under that operation.

Not all sets are closed under all operations. For example, is not closed under the operation

of subtraction (for instance, and , but , which is not in).

However is closed under addition and multiplication. This concept is vital to us as

computer scientists because we frequently work with strongly typed programming

languages, where each variable has a specific type that cannot change. If we are dealing with

integer variables, we need to be sure the operations we perform will only produce integer

values.

Property 2 is called the associative property. It says that if we are composing a sequence of

permutations we can group them with parentheses in different ways without changing the

result. We will see an application of this later in these notes.

Property 3 asserts that the identity permutation can be composed with any permutation

without changing it. Once again, we can draw a parallel to other sets and operations. For

example, in the set and the operation of multiplication, we know that

Property 4 asserts that every permutation has an inverse. This property is also true for some

sets and operations but not all. For example, in the set and the operation of addition, the

identity element is 0 and every element has an inverse (for instance, the inverse of 7 is -7).

However in the set and the operation of addition, the identity element is still 0 but the non-

zero values do not have inverses (for instance there is no integer such that

).

Property 4 is particularly important when we use permutations in cryptography – there’s not

much point encoding information with a permutation if there is not some other permutation

that will do the decoding.

Each of these properties follows from the definition of permutations and the properties of

functions. I recommend that you do some examples and convince yourself that these are

true.

(Side note: A set and an operation that satisfy these four properties are called a group. Group

theory is one of the most important branches of mathematics, with applications in

communications, theoretical physics, applied physics, biology, chemistry, robotics and many

other fields. We don’t have time in CISC-203 to explore this topic but I encourage you to

spend some time looking into it.)

Note that there is property possessed by many operations that is not true of the composition

of permutations: commutativity. Commutativity holds when we can switch the left-to-right

order of the operands without changing the result. For example, when we are multiplying

integers, we know that ... and the same is true for addition. Not all operations

are commutative. For example, subtraction is not commutative: except

when

Composition of permutations is not commutative. In general, ... although

we will see some special cases where they are equal.

In class I posed a challenge: given permutations and in , can you always find a

permutation such that ?

The answer is yes. Here’s how: we can solve this equation for in much the same way as we

would solve an equation involving numbers ... we just try to get by itself on one side.

(What I mean is, if we are asked to solve we isolate the by adding to both

sides getting , which simplifies to , and finally

. But here the only operation we have is composition. So what can we do with

composition to get rid of the on the left side? Well, remember that ... and

So we can start with (in which and are known, and is the unknown) and

apply the following operations that maintain equality

and we are done! It’s exactly the same process as solving for in

It’s easy to check that this is correct. If we take and replace by we get

 which equals which equals which equals

But wait a second! This means that in order to find we need to know ... is there some

way we can compute the inverse of ? The answer is yes ... we will see there are at least two

simple ways to compute if we are given .

Cycle Notation for Permutations

Now we introduce another representation for permutations ... one that makes it possible to

work with permutations very easily.

Consider this permutation:

What happens if we imagine composing with itself? Let’s trace what happens to the

element 1. We are going to apply twice: the first application maps 1 to 4, and the second

application maps that 4 to 2. If we compose with again, that 2 is mapped back to 1.

Treating as a function, we see , , and

(Remember, we write as and as etc.)

 Composing with even more times will cycle through 4 then 2 then 1 then 4 then 2 then 1

etc. We can write this behaviour as etc.

If we trace what happens to 2 when we repeatedly compose with itself and apply the

resulting function to 2, we see exactly the same pattern :

etc. The same thing happens if we start with 4 and trace what happens to it when we

repeatedly compose with itself and apply the resulting function to 4: we get the pattern

4 etc

So in this sense, 1, 4 and 2 form a cycle: 1 goes to 4, 4 goes to 2, and 2 goes to 1. We write this

cycle as (1, 4, 2) - it is a notational device that describes the three ordered pairs (1,4),(4,2),

(2,1) which belong to

What about the rest of ? Since we have dealt with 1, 2 and 4, let’s see what happens to 3.

Following the same analysis as we did for 1, 2 and 4 (but skipping over some of the details)

we see this pattern: etc. which we write as

(3, 5, 7, 6). Again we can see that this is a non-ambiguous shorthand way to represent the

four ordered pairs (3,5), (5,7), (7,6), (6,3) that make up the rest of

Thus we can express the entire definition of with the two cycles (1,4,2)(3,5,7,6) - we call this

the cycle notation for All of the information that defines is there, expressed in a different

way (in other words, we can reconstruct the standard representation from the cycle notation).

Notice that from each permutation, we can only get one cycle notation version. (We saw this

for above: no matter which elements we start with, we always get the same repeating

patterns for 1, 4 and 2, and for 3, 5, 7, and 6.) Similarly, from any cycle notation

representation, we can only reconstruct one permutation in standard notation. This means

that the cycle notation for each permutation is unique (up to changing the order of the

cycles, because (1,4,2)(3,5,7,6) gives the same information as (3,5,7,6)(1,4,2) and up to rotating

the elements within each cycle, since (1,4,2) and (4,2,1) and (2,1,4) all represent the same

information).

We can also extract the cycle notation for a permutation without going through the effort of

composing with itself over and over. We can just build the cycles directly from by

observing “1 goes to 4, 4 goes to 2, and 2 goes to 1” to get the cycle (1, 4, 2). Then we can say

“What happens to 3?” and observe “3 goes to 5, 5 goes to 7, 7 goes to 6, and 6 goes to 3” to get

the cycle (3, 5, 7, 6).

