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Remember that  represents the set of all permutations of {1, 2, ... n}

There are some basic facts about  that we need to have in hand:

1.  Closure: If   and      then   

2.  Associativity: If   and  and      then    

3.  Identity Element:  There is a permutation    such that      

4.  Inverse:  If      then    and 

Property 1 says that the composition of two permutations is another permutation.  This 

sounds trivial but it is our first look at a very important concept: closure.  When we apply an 

operation to two elements of a set and always get another element of the same set, we say 

that set is closed under that operation.

Not all sets are closed under all operations.  For example,  is not closed under the operation 

of subtraction (for instance,  and , but , which is not in ).  

However  is closed under addition and multiplication.  This concept is vital to us as 

computer scientists because we frequently work with strongly typed programming 

languages, where each variable has a specific type that cannot change.  If we are dealing with 

integer variables, we need to be sure the operations we perform will only produce integer 

values.

Property 2 is called the associative property.  It says that if we are composing a sequence of 

permutations we can group them with parentheses in different ways without changing the 

result.  We will see an application of this later in these notes.

Property 3 asserts that the identity permutation    can be composed with any permutation 

without changing it.  Once again, we can draw a parallel to other sets and operations.  For 

example, in the set   and the operation of multiplication, we know that  



Property 4 asserts that every permutation has an inverse.  This property is also true for some 

sets and operations but not all.  For example, in the set  and the operation of addition, the 

identity element is 0 and every element has an inverse (for instance, the inverse of 7 is -7).  

However in the set   and the operation of addition, the identity element is still 0 but the non-

zero values do not have inverses (for instance there is no integer  such that

  ).

Property 4 is particularly important when we use permutations in cryptography – there’s not 

much point encoding information with a permutation if there is not some other permutation 

that will do the decoding.

Each of these properties follows from the definition of permutations and the properties of 

functions.  I recommend that you do some examples and convince yourself that these are 

true.

(Side note: A set and an operation that satisfy these four properties are called a group.  Group

theory is one of the most important branches of mathematics, with applications in 

communications, theoretical physics, applied physics, biology, chemistry, robotics and many 

other fields.  We don’t have time in CISC-203 to explore this topic but I encourage you to 

spend some time looking into it.)

Note that there is property possessed by many operations that is not true of the composition 

of permutations: commutativity.  Commutativity holds when we can switch the left-to-right 

order of the operands without changing the result.  For example, when we are multiplying 

integers, we know that  ... and the same is true for addition.  Not all operations

are commutative.  For example, subtraction is not commutative:    except 

when 

Composition of permutations is not commutative.  In general,   ... although 

we will see some special cases where they are equal.

In class I posed a challenge:  given permutations  and  in   , can you always find a 

permutation  such that    ?



The answer is yes.  Here’s how:  we can solve this equation for  in much the same way as we

would solve an equation involving numbers ... we just try to get  by itself on one side.  

(What I mean is, if we are asked to solve  we isolate the  by adding  to both 

sides getting , which simplifies to , and  finally

.  But here the only operation we have is composition.  So what can we do with 

composition to get rid of the  on the left side?  Well, remember that  ... and

So we can start with  (in which  and  are known, and  is the unknown) and 

apply the following operations that maintain equality

and we are done!  It’s exactly the same process as solving for  in  

It’s easy to check that this is correct.   If we take  and replace  by   we get

 which equals   which equals   which equals  

But wait a second!  This means that in order to find  we need to know   ... is there some 

way we can compute the inverse of   ?   The answer is yes ... we will see there are at least two

simple ways to compute  if we are given .



Cycle Notation for Permutations

Now we introduce another representation for permutations ... one that makes it possible to 

work with permutations very easily.

Consider this permutation:

What happens if we imagine composing  with itself?  Let’s trace what happens to the 

element 1.  We are going to apply  twice: the first application maps 1 to 4, and the second 

application maps that 4 to 2.  If we compose with  again, that 2 is mapped back to 1.   

Treating  as a function, we see , , and 

(Remember, we write  as     and    as     etc.)

 Composing with  even more times will cycle through 4 then 2 then 1 then 4 then 2 then 1 

etc.  We can write this behaviour as  etc.

If we trace what happens to 2 when we repeatedly compose  with itself and apply the 

resulting function to 2, we see exactly the same pattern :  

etc.   The same thing happens if we start with 4 and trace what happens to it when we  

repeatedly compose  with itself and apply the resulting function to 4: we get the pattern       

4  etc

So in this sense, 1, 4 and 2 form a cycle:  1 goes to 4, 4 goes to 2, and 2 goes to 1.  We write this 

cycle as (1, 4, 2)   - it is a notational device that describes the three ordered pairs (1,4),(4,2),

(2,1) which belong to 

What about the rest of  ?  Since we have dealt with 1, 2 and 4, let’s see what happens to 3.  

Following the same analysis as we did for 1, 2 and 4 (but skipping over some of the details)  

we see this pattern:    etc.  which we write as 

(3, 5, 7, 6).  Again we can see that this is a non-ambiguous shorthand way to represent the 

four ordered pairs (3,5), (5,7), (7,6), (6,3) that make up the rest of 

Thus we can express the entire definition of  with the two cycles (1,4,2)(3,5,7,6)  - we call this

the cycle notation for   All of the information that defines   is there, expressed in a different

way (in other words, we can reconstruct the standard representation from the cycle notation).



Notice that from each permutation, we can only get one cycle notation version.   (We saw this 

for  above: no matter which elements we start with, we always get the same repeating 

patterns for 1, 4 and 2, and for 3, 5, 7, and 6.)   Similarly, from any cycle notation 

representation, we can only reconstruct one permutation in standard notation.  This means 

that the cycle notation for each permutation is unique (up to changing the order of the 

cycles, because (1,4,2)(3,5,7,6) gives the same information as (3,5,7,6)(1,4,2)  and up to rotating 

the elements within each cycle, since (1,4,2) and (4,2,1) and (2,1,4) all represent the same 

information).

We can also extract the cycle notation for a permutation  without going through the effort of 

composing  with itself over and over.  We can just build the cycles directly from  by 

observing “1 goes to 4, 4 goes to 2, and 2 goes to 1” to get the cycle (1, 4, 2).  Then we can say 

“What happens to 3?” and observe “3 goes to 5, 5 goes to 7, 7 goes to 6, and 6 goes to 3” to get 

the cycle (3, 5, 7, 6).


