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Picking up from the last day’s notes … we are working with a permutation 

We can also represent this permutation by a diagram with each ordered pair represented by 

an arrow.  The diagram for  looks like this:

So what can we do with a permutation expressed in cycle notation?

Computing the Inverse of a Permutation in Cycle Notation

Suppose we have a permutation  and we need to compute  .  We could do it from 

standard representation ...

For example, consider      To compute , we could see that 

“4” is in the first position, so the ordered pair (1,4) must be in  ... which means the ordered 



pair (4,1) must be in  .  Similarly, “2” is in the fourth position, so the ordered pair (4,2) is 

in  , so (2,4) must be in , and so on ... it’s not that hard but it’s a bit tedious.

But with the permutation expressed in cycle notation, computing  is trivially easy: we just

reverse each cycle.  So the inverse of (1,4,2)(3,5,7,6)  is simply (2,4,1)(6,7,5,3).  You can check 

the details of this example to confirm that it works, but the logic of it is pretty 

straightforward:  contains the ordered pair (1,4) – this is encoded in the first cycle, so  

must contain the ordered pair (4,1) – and this is encoded in the reverse of the first cycle.

Note that reversing a cycle is very different from rotating a cycle:  the cycles (a, b, c, d) and     

(c, d, a, b) represent exactly the same information, but (d, c, b, a) represents the inverse.

Since we can rotate the values within a cycle without changing the permutation, and we can 

list the cycles in any order, people sometimes ask if there is a “canonical” way to select the 

cycle representation of a permutation.  To the best of my knowledge, there is no universally 

accepted canonical representation … but here is my personal preference:  I rotate each cycle 

so that the lowest number in the cycle comes first, and I order the cycles so that the initial 

values in the cycles are in ascending order.  So I would write the permutation

   as   

Composition of Two Permutations in Cycle Notation

Now suppose we have two permutations  and  and we want to compute   .  

(Remember, this means “the permutation that results when we apply  , then apply    ”)  

Once again cycle notation makes this very easy, and an example will show how this is done.

Let’s use   and  .

In cycle notation,  = (1,4,2)(3,5,6,7)   and     = (1,4)(2,7)(3,6)(5)     - you should check this.

(Why is 5 all by itself in ?  Because  maps 5 to itself ... 5 forms a cycle of length 1.)

We can build the cycle notation for  as follows:

Start with 1.  Apply  to it, giving 4  (that is to say ).  Then apply  to that 4, giving 

2 (that is,  ).  So in , we see that 1  2 (that is,

).

   

So our first cycle in  starts (1, 2 ...)



Now let’s see what  does to 2.   takes 2 to 7, and  takes 7 to 6.  So . 

So our cycle in  now looks like (1, 2, 6 ...)

Now let’s see what  does with 6.   takes 6 to 3 and  takes 3 to 5, so  . 

The cycle in  we are building now looks like (1, 2, 6, 5 ...)

Following the same steps we see that .  Then we discover that 

 So we have discovered that in   ,   is a cycle, and in cycle 

notation this is (1,2,6,5,7)

We still haven’t dealt with 3 and 4.  It doesn’t matter which we start with, so let’s start with 4.

  and , so .  In cycle notation this is just (4)

You can verify for yourself that , giving (3) as the last cycle in 

Putting all the cycles together, we get  = (1,2,6,5,7)(3)(4)

You should check this too!

Shorthand Notation for Cycles

When using cycle notation, sometimes we leave out the cycles of length 1.   This can be 

ambiguous unless we know we are dealing with permutations from a particular 

In the previous example, if we specify that  and  are in   then we can write

 and just leave out the (3) and (4).  The reader will know they are cycles

of length 1 because if they weren’t we would have included them.



****** Bonus Material For Those Who Just Can’t Say No to Permutations ******

This material will not be on any of our tests, but I hope some members of the class will find it 

interesting.

Consider these permutations of {1,2,3,4,5,6,7,8}:

     and      

When we put these into cycle notation, we get

    and        

They look very different ... and yet in a certain sense they are identical!  Each has two cycles 

of length 3 and a single cycle of length 2.  If you drew the diagrams for them as we saw at the 

beginning of this day’s notes, then erased the labels, the two drawings would be 

interchangeable.  Their essential structure is the same – we have just “re-labelled” the 

elements.  Compare this to the permutation 

It’s clear that   has a fundamentally different structure from   and  .  This is a profoundly 

important concept that we will see again in other contexts.  We say that \pi and \sigma are 

isomorphic – which means they have the same shape.

And what can we do with this?  We can define an equivalence relation on permutations!

For permutations   and , both in , we can say   iff  and  have the same “cycle 

structure” .  It should be clear that  is reflexive, symmetric and transitive.

Now we can ask questions about this equivalence relation.  For example, how many 

equivalence classes are there for  ?   We can answer this by looking at the number of 

different cycle structures.   

Let’s consider permutations of [1 2 3].  The cycle structure of a permutation of this set must be

either

(. . .)    -  a single cycle containing all three values, or

(.)(. .)  -  a cycle of length 1 and a cycle of length 2, or

(.)(.)(.) - three cycles of length 1   (there is only one permutation with this structure :    )



and this means that in a very real sense, there are only 3 ways to permute a set with 3 

elements.

Now consider permutations of {1, 2, 3, 4}.  The possible cycle structures are

(. . . .)

(.)(. . .)

(.)(.)(. .)

(. .)(. .)

(.)(.)(.)(.)

so there are 5 ways to permute a set with 4 elements.

Unfortunately there is no simple formula to compute the number of equivalence classes of 

for arbitrary values of n (there is a formula but it’s not simple).  It turns out that these are 

known as partition numbers.  Wikipedia has a good article about them : 

https://en.wikipedia.org/wiki/Partition_(number_theory).

We can also use the cycle representation to prove this claim:

Let  be a permutation.  Then there exists a positive integer  such that 

Proof:  Suppose   contains a cycle  of length .   where  is any positive multiple of   will

restore the elements of  to their “natural” positions.   Thus if  contains cycles with lengths 

in the set  then   

As an example, consider our old friend  = (1, 4, 2) (3, 5, 6, 7)

Consider what happens to 1 as we apply  repeatedly.  We can see what happens very easily 

from the cycle notation

and we can see that the pattern repeats: for every k that is a multiple of 3, 

But the same is true for 4 and 2:  for every k that is a multiple of 3,  and



But what about the values in the other cycle?  We can see quickly that ,

,   and  … and the same will be true for any  where k is a

multiple of 4

So if k happens to be a number that is a multiple of 3 and a multiple of 4, then  will map 

every value onto itself … in other words,   for all common multiples of 3 and 4


