20200127

Random Variables

Let (S, P) be a sample space. A random variable is a function X from S to V where V is some set.

Usually V is a set of numbers, and X is a function that measures some attribute of the outcome.

Example: Let $S=\{$ result of tossing a red die and a blue die $\}=\{(1,1), \ldots,(6,6)\}$
Let $X(s)=$ the sum of the two values in s
So $X((3,2))=5, \quad X((4,6))=10, \quad$ etc.

Another Example: Let $S=\{$ result of tossing a coin 5 times $\}=\{H H H H H, ~ H H H H T, ~ . . ., ~ T T T T T ~\} ~, ~$
Let $X(s)=$ the number of Heads in s
So $X(H H H H H)=5, X($ THHTT $)=2$, etc.

Yet Another Example: Let $S=\{10,11,12,13,14,15\}$ and let $\mathrm{P}(\mathrm{i})=1 / 6 \forall i \in S$

$$
\text { Let } X(s)=s \% 4 \quad \text { (where } \% \text { means "mod") }
$$

s	$X(s)$
10	2
11	3
12	0
13	1
14	2
15	3

Let's pursue this example a bit further. We can define events based on X . For example, " $X=2$ " is an event, as is " $X \in\{1,2\}$ ", " $X \geq 2$ ", etc. And since we have events, it makes sense to determine the probability of these events. So what is $\mathrm{P}(\mathrm{X}=2)$?

Looking at the table above, we can see that $X(s)=2$ occurs when $s \in\{10,14\}$, and since 10 and 14 have combined probabilities $=\frac{1}{3}$, we can see that $P(X=2)=\frac{1}{3}$

Now let's look at the coin flipping example described previously:

Let $S=\{$ result of tossing a coin 5 times $\}=\{\mathrm{HHHHH}, \mathrm{HHHHT}, \ldots$, TTTTT $\}$
Let $X(s)=$ the number of Heads in s

So $X(H H H H H)=5, X(T H H T T)=2$, etc.

Now we can ask questions such as "What is the probability that $X=2$?" or equivalently, "What is $P(X=2)$?"

At this point, many people (who should know better) make a crucial mistake: they assume without any justification that the coin we are flipping is balanced (i.e. H and T have equal probability of coming up on each toss). We can't make that assumption, so we deal with the
more general case. Suppose the coin has probability p of coming up H, and therefore probability (1-p) of coming up T.

What is $P(X=2)$ with $X(s)$ defined as the number of Heads in s ?

The coin tosses are independent (the coin has no memory), so the probability of tossing the outcome HHTTT (2 heads and then 3 tails) is

$$
p \cdot p \cdot(1-p) \cdot(1-p) \cdot(1-p)
$$

This is one of the outcomes that gives $\mathrm{X}=2$

But so is TTHTH, which has probability $(1-p) \cdot(1-p) \cdot p \cdot(1-p) \cdot p$
and in fact we can see that every outcome containing exactly $2 \mathrm{H}^{\prime}$ s will have probability $p^{2} \cdot(1-p)^{3}$, and $\mathrm{P}(\mathrm{X}=2)$ will just be the sum of all of these. How many are there?

The two heads can occur in any of the five positions, so a simple counting argument tells us there are $\binom{5}{2}$ different outcomes with exactly 2 H's. The final answer is:

$$
P(X=2)=\binom{5}{2} \cdot p^{2} \cdot(1-p)^{3}
$$

Similarly we can compute $P(X=4)=\binom{5}{4} \cdot p^{4} \cdot(1-p)$

And of course this generalizes completely: when we toss the coin n times, the probability that $\mathrm{X}=\mathrm{k}$ is given by

$$
P(X=k)=\binom{n}{k} \cdot p^{k} \cdot(1-p)^{n-k}
$$

which we all know and love as the Binomial Theorem or Binomial Formula. What's it doing here in our discussion of probability? It's showing us (again!) that probability theory is a branch of discrete math.

Exercise: Suppose we are tossing a coin with $P(H)=1 / 3, P(T)=2 / 3$. If we toss the coin four times and $X(s)$ is the number of Heads we see in outcome s, what is $P(X=2)$?

