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Modular Arithmetic

We are accustomed to performing arithmetic on infinite sets of numbers.  But sometimes we 

need to perform arithmetic on a finite set, and we need it to make sense and be consistent (as 

far as possible) with normal arithmetic.  In this unit we will discuss versions of addition, 

multiplication, subtraction and division for finite sets of numbers.

We will focus on the sets defined by  where 

 is just the set of remainders we can get when we divide integers by n

One of the important features we want to build into our mathematical operations for finite 

sets is closure: the property that when we apply an operation to two elements of the set, the 

result is also an element of the set.    Note that we have encountered closure before ... when 

we apply the composition operation to two permutations, the result is another permutation.

Since we are working now with , it seems reasonable to use “mod n” as part of our 

definitions of addition, multiplication, subtraction and division (because if we end each 

calculation with “mod n” we are guaranteed that our results will be in   , so we will have 

closure).   In these notes I will occasionally use “%” to represent “mod” .

Since we will be doing a lot of mod operations in this unit, it makes sense to explore the 

properties of this.  Much of this is review – none of the new material is difficult.

When we write the expression “ ”    (where  and  are both integers)  we mean 

“the unique integer      such that 

   for some integer  

and

 “

The easy way to see that   must exist and must be unique is to visualize   on a number line 

where all the multiples of  are marked.  We can think of  as the “offset” from the closest 

multiple of  that is   .   It should be clear that for each value of , there is exactly one  in 

the range  that works as this offset.



When we write the statement “ ”  we mean “ ”

Some people get confused by “ ” because it looks like the “ ” is only 

being applied to one side.   I have to agree ....... it would make more sense to write            

“ ”   to show that the “ ” applies to the   , and not just to    ...... but nobody

is going to listen to me so we are stuck with the standard notatoin.

So “ ”  is a true statement   because       and   

All of the examples we have looked have involved positive integers.   What happens if we try 

to include negative integers?

For example, what is     ?     It turns out that our definition of   works 

perfectly well if    and 

We can see that        and there is no other value of  in the range   

that lets us write      .... so    

What if we let  be negative?   What is    ?   What is    ?   There 

is no universally accepted definition for these situations.  Some mathematicians suggest we 

should just use the absolute value of , regardless of whether it is negative or positive (so

 and  are handled the same way) but others suggest that when  is negative, 

the remainders should be in the range 

Fortunately this burning controversy will not be an issue for us ... we will always use values 

of  that are > 1



We will use the symbols  to represent addition, multiplication, subtraction and 

division on 

 and  are very easy to define, and we start with them:

Let a and b be elements of .   Then ,  and 

Example:  Let n = 7, a = 3, b = 6.   

       Let n = 8, a = 3, b = 6

It’s useful to look at the full  and  tables for a couple of small values of n.

Here is the  table for 

b

0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3



Here is the  table for 

b

a

0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

A brief examination of these two tables reveals some interesting patterns.  For example, both 

are symmetric about their main diagonal (that is, the top right “triangle” is the mirror image 

of the bottom left “triangle”).   This is because  and  are both commutative, which means 

that    and .   

Let’s prove that  is commutative.  The proof is based on the fact that ordinary addition is 

commutative (ie ):

The proof that  is commutative is just as easy.

We can also see that in the  table, each row is a permutation of   .  It’s not hard to see 

why this happens: clearly the first row is just a copy of the “axis row” since we are just 

adding 0 to each element of .   Then in each subsequent row the  value increases by 1, so 

the  value increases by 1, so the remainder when we divide by n goes up by 1 ... until it 

drops back down to 0.

We can see that the same thing would happen for  on any  , so every  table is going to 

look a lot like the one we just did.


