
The following lemma will be essential to many of the computational tools we will use in this 

segment of the course:

Lemma:   Let  be an integer    and let  and  be any integers.

Then   

Proof:

Let             this means     is the unique integer such that

     where  is an integer and

We want to show 

by definition

We can put that to use in several ways!  

Claim: Let ,  and  be integers, with .   Then    

Proof:   Let    and 

   and   

Claim:  Let ,  and  be integers, with .   Then    

I’ll let you work out the proof of that.

The significance of these results is that if we are doing a large calculation that ends with a 

“%n” operation, we can add in more “%n” operations along the way without changing the 

result (as long as we are careful).



Here are two examples of how we can apply these equalities.

Example 1:   What is the value of    ?     

Example 2: What is the value of   ?

This can be particularly useful if we attempting to code these calculations and the numbers 

we are adding and/or multiplying are so big that we are in danger of exceeding the MaxInt 

for whatever system we are using.  

This is the end of our discussion of basic principles of modular operations.  We now return 

you to your regularly scheduled notes.



Here is the  table for 

b

a

0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

The  table is a little more complicated than the  but there are certainly patterns here too. 

The first row is all 0’s of course because each entry is just the remainder of dividing 0*b by 

n ... which is always 0.  Each of the other rows is a permutation of   .  Is that always going to

be true?  Also, is there any way to predict what the permutations will be?

Let’s look at the table for 

b

a

0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Well there goes our idea that all the rows (except for the 0 row) would be permutations of

 : the row for 2 just contains 0 2 0 2.  

So what property does 5 have that 4 does not?  We will see that the crucial property is that 5 is

prime.   Now notice that two of the rows of the  table are permutations of  :  the rows for

1 and 3.  So what property do 1 and 3 have that 2 does not?  We will see that the crucial 

property is that 1 and 3 are both relatively prime with 4 (that is, the only factor they share 

with 4 is 1).



We will explore these relationships and properties in detail over the next couple of classes, so 

this is just a bit of dramatic foreshadowing.

There are some other simple properties of  and  that we can establish.

0 is the identity element for  :   

We say that 0 is the additive identity for 

1 is the identity element for  :    

We say that 1 is the multiplicative identity for  

It is also easy to show that  and  are associative:

I’ll prove it for  ... at some point you should satisfy yourself that it is true for  also



Now let’s consider modular subtraction, for which we use the symbol     

(Incidentally, the LaTeX code for   is “\ominus”  which requires me to make the painful 

pun ... modular subtraction looks ominous.)

It would make sense to define  as   

x  y = (x – y) %  n     

and in fact that is exactly where we are going to end up.  But we are going to take a slightly 

round-about route because that will help us when we define   (modular division)

In normal arithmetic, when we write a – b = x, we understand that this is equivalent to 

writing a = b + x.   So when we want to figure out the value of x in the equation a  b = x, it 

makes sense to say x is the element of    such that a = b  x



Let’s look at the  table for  again

b

0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

From our definition of     we can compute     as  

but we can also get this directly from the table for 

Letting  , we can turn this around, as discussed above, to get 

We can find x by looking at the 3 row of the table and scanning across until we see 2 .  (How 

do we know we will find it?  Because each row of the  table is a permutation of     - so 2 

must be in the row somewhere.   The number at the top of this column gives us the x that 

adds to 3 to give 2  ... we see it is 4, which exactly the same result as we got from the formula.  

In fact, we can show that this method of using the  table to compute  will always give 

the same result as the formula.

Which method is better?  They are really both just doing the same thing.  If n is small and we 

have the  table already, perhaps there is a case for using the table.   But if n is large, 

constructing the table (or even just the relevant row of it) might take a long time – we’re 

probably better off using the formula  

So what was the point of all of this?  Why not simply define  and move 

on?



The point was that we can define  completely in terms of   (repeating this :

    )

Our next task will be to define modular division      ... and we will do it using .  


