
Let’s look at a little example of a problem that becomes trivially easy to solve when we 

understand modular arithmetic:

Problem:   Find all values  such that  

First we might ask how many solutions there could be?  It’s conceivable that there are none, 

one, more than one but a finite number, or infinitely many.

Suppose  is a solution.   Then it’s not hard to see that  is also a solution, since if

then      also.

In fact  if  is a solution then values such as

 are all solutions.

From this it follows that if there is at least one solution, then there are infinitely many.

It’s also easy to show – though I didn’t do this in class – that if there is a solution, then there 

must be a solution in 

Proof:  Suppose  is a solution.   Consider      By definition,  .   We know

,  so   .    By the argument given above,  is also a solution.

So to find all solutions to the problem, we can start by finding the solution in  

   is equivalent to   in  

Note that 4 is invertible in  because 

Multiplying both sides by  we get 

But   so this reduces to  

Now we just need to know what  is

In   ,    = 3    (  , and )

So    ,    ie.   



But remember that if  is a solution to , then so is    

for all integer values of 

So our final answer is:

all integers of the form  , where  is any integer

In that example finding   in  was easy enough to do in my head.   But what if the 

question were “Find all solutions to ”     It turns out that 100019 is 

prime (I looked it up) so we know that  exists in , but how do we find it?

The answer to this question is a bit outside the scope of this course at this point, but if you are

interested you will find a good description of different methods at

https://en.wikipedia.org/wiki/Modular_multiplicative_inverse

and you will also find much good knowledge in the monumental 4-volume work “The Art of 

Computer Programming” by living legend Donald Knuth.

Our textbook discusses using Euclid’s algorithm to find inverses.  We won’t be doing that.

If  is small, there is a simple method for finding .

We know we are looking for a value  such that  

But this is equivalent to saying   ,  

which is the same as   

In other words, we are looking for a multiple of  that is 1 more than a multiple of .  Let’s 

just list the multiples of  and see what we find!

https://en.wikipedia.org/wiki/Modular_multiplicative_inverse


For example, suppose we want to compute   in  

b Multiples

of 3

Multiples

of 7

0 0 0

1 3 7

2 6 14

3 9 21

4 12 28

5 15 35

Whoa, there it is!   , and .   So , which means

, which means , which means   in  

Another example:  what is  in   ?

b Multiples

of 8

Multiples

of 11

0 0 0

1 8 11

2 16 22

3 24 33

4 32 44

5 40 55

6 48 66

7 56

So we see that  in  

This method gets tedious when  is large, but it still works.  This method really is the same as

working out the appropriate row of the multiplication table, without applying the  to 

every calculation.



Let’s return to problems involving numbers that are small enough to work with easily.

Consider this problem :  find all solutions to 

We can apply the same technique as before:  in   ,  

  in     gives us  ,  so 

Thus the set of all solutions is    for any integer 

Easy enough, but consider this one:   find all solutions to 

 does not exist in   so we cannot apply the method we have used successfully so far.  In 

fact, a bit of experimentation shows there is no solution to the equation  in    

and therefore no solution in general.

These problems all have the general form  “Find all solutions to  ”

The first two examples are solvable because  and  are relatively prime, so   exists in .

In the third example,  and  , which are not relatively prime … and the problem 

has no solution.

 

But does this mean that we can only solve equations of the form  when   

and  are relatively prime?

Alas, that would be too simple.  Consider this example:

Find all solutions to  .  

This looks like it might suffer the same fate as the last example since we know   does not 

exist in  .  But in fact, the equation  does have solutions in  :  ,  

and  are all solutions.  We can verify this by looking at the multiplication table for 

Thus any integer of the form

 ,        or    

is a solution to the original problem.



A bit of exploration will reveal that we can find solutions to 

    only when  or  or 

What is the magical property that makes these problems solvable?  It turns out that we need a

very specific relationship between all three numbers that define the problem.

In class I gave this summary:

We can find solutions to    (where ) 

if and only if   is a multiple of    

This is not very hard to prove and I recommend it as an exercise if you are intrigued by 

modular arithmetic.  Or … see this proof if you get stumped.

http://sites.cs.queensu.ca/courses/cisc203/Record/20181016%20-%20Proving%20That%20Theorem.pdf


In class we talked about variations on this type of problem.  We have now learned how to 

determine the existence of solutions to problems such as

Find all solutions to 

(there are infinitely many because 5 and 7 are relatively prime so ,

  and 4 is obviously a multiple of 1 )

and 

Find all solutions to     

(there are none because 7 is not a multiple of   )

and

Find all solutions to 

(there are infinitely many because 6 is a multiple of  )

When solutions exist, we know how to find them.

Here’s another type of question:

For what values of   can the following equation be solved:

We know this question can be solved if and only if    and   is a multiple of  

.  Now , and the multiples of  that are elements of  

  are 

So     has solutions if and only if  



Exponentiation in Modular Arithmetic

Here’s an interesting question:  what is the value of   ?

Well you may not find it interesting, but hopefully you will agree that it is challenging.  We 

could certainly just work out the value of  and compute its remainder when divided by 7 

… but that isn’t really feasible because  is a ridiculously large number and our 

computing hardware usually places a limit on the largest integer we can store.

Fortunately we can apply some of our smarts about modular arithmetic and avoid the integer

overflow problem.

Remember this fact about modular arithmetic:        

In other words, we can carry the “ ” operation inside the brackets without changing the 

result.  We will use this principle heavily in CISC-235 when we look at the hash-table data 

structure.

So how does that help us with  ?

In other words, we could start with , then repeatedly multiply by  and apply  to the 

result until we have multiplied 4 by itself 155 times.  In pseudo-code it would look like this:

answer = 4
for c = 1 to 155:

answer = (answer * 4) % 7
print answer

This approach completely avoids large numbers – the largest we will ever deal with is .  

But we are doing a lot of work, and there are much better methods.

Consider this:



It is  because we started with 156 4’s and we combined them into 78 pairs. 

Continuing …

where it is  because we started with 78 2’s and we combined them into 26 trios

But    and   …. so our final answer is

 

This method arrived at the answer with very little calculation but quite a bit of brain work.  

We were “lucky” that  divided by , and “lucky” that  divided by , and “lucky” that

  .  If we tried to turn this into an algorithm we would have to take care of 

situations where we are not so lucky – it is doable though.

Tomorrow we will look at two more methods that significantly reduce the number of 

computations without requiring an excessive amount of analysis.  I’m including the notes on 

the first method here.



Solving Exponentials Using Repeated Squaring

Consider the problem of computing    ?

The first thing we can do is use our rule that   

Since  is just the product of 19 with itself over and over, we can write

which is looking better already.

As we have seen, we could use something like this

x = 3
for p = 2 to 54:

x = (x*3) % 8
print x

But we can do better!  Here’s how:

We can write    as  

Why would we do this????   Well,  is certainly easier to compute than  and once we 

have , we can square it to get  with one more multiplication.

We can’t reduce  quite as easily because 27 is odd … but we can “extract” one 3 and write

   as  

We can write    as   

We can write    as  

We can write   as    

Putting these all together, we get



  

which we can compute by starting at the middle and working outwards.   Recall that we are 

doing all of this  , so we can apply  after each operation to keep the values small.

Algorithmically the process looks like this:

x = 3
x = (3 * x^2 ) %8 this gives us 3^3  %8
x = (x^2) %8 this gives us 3^6  %8
x = (3 * x^2) %8 this gives us 3^13 %8
x = (3 * x^2) %8 this gives us 3^27 %8
x = (x^2) %8 this gives us 3^54 %8

This uses a grand total of 8 multiplications (counting each squaring operation as a 

multiplication) and 5 “mod” operations …. which is a huge improvement over the loop that 

executed 53 times.

If you are curious about the actual answer to the question (although personally I find the 

process much more interesting than the answer – sort of “the journey is more important than 

the destination” thinking)  we can easily work it out, line by line

So  

Notice that there is no mystery about the decomposition process – if the exponent is even we 

simply divide it by 2, and if it is odd we “extract” one copy of the value and divide the 

remaining exponent by 2



Another quick example:    what is  ?

First we reduce the  by applying  to it, changing the problem to .  Then we go 

to work on the exponent.

485 = 1+ 2*242 

242 = 2*121

121 = 1 + 2*60 

60 = 2*30

30= 2*15

15 = 1+2*7 

7 = 1+2*3 

3 = 1+2*1 



So our computation looks like this:

x = 8
x = (8 * x^2) %13 8^3
x = (8 * x^2) %13 8^7
x = (8 * x^2) %13 8^15
x = (x^2) %13 8^30
x = (x^2) %13 8^60
x = (8 * x^2) %13 8^121
x = (x^2) %13 8^242
x = (8 * x^2) %13 8^485

In this method we repeatedly square the previous value of x to get the next value of x, and so 

this solution method is called repeated squaring, or the repeated squares method 

(mathematicians are so creative about naming things!)

But in both examples we saw that we occasionally have to throw in another copy of   - 

basically whenever we need to get an odd exponent.  Wouldn’t it be wonderful if there were 

some way to know in advance when we need to do that?

Fear not, citizens … there is a way.  To illustrate it, let’s look at the first problem again.  Let’s 

create a binary string from the lines of computation by writing down “1” if we introduce a 3 

on that line, and “0” if we don’t.  The result is 

Now let’s represent the exponent we are trying to achieve, in binary notation.   

in base 2 notation … and it’s the same binary string!!!!!

For the second example, the binary string formed from “1” when we bring in an 8, and 0 

when we just square is 111100101   … and the base 2 representation of 485 is 111100101

(The proof of this remarkable correspondence is not difficult.  Try it as an exercise.)



The net result is that we can construct an algorithm that computes  for any positive 

integers  and  :  

start with 

repeatedly compute  where  is the next bit of 

(Note that the first line “uses up” the first bit of   so the “repeatedly” step begins with the 

second bit of .)

The use of  above is just a clever trick to make the algorithm concise.  When  , this 

results in multiplying by  … and when   it results in multiplying by .  If we were 

actually coding this algorithm, we could just as easily use an if  statement to decide whether 

to multiply by  or not on each iteration.

Example:  let’s use this method to compute 

156 in binary notation = 10011100

which is our answer.

Exercises:

1.  Compute   

2.  Compute  

3.  Compute    


