
RSA Cryptography

The 1970’s were an important time in the development of the science of computing. At the

start of the decade Cook and Levin proved that there are some problems that are so hard that

finding fast algorithms to solve them would be equivalent to giving our computers magical

powers. From the point of view of cryptographers, this class of problems was an enticing

opportunity. Would it be possible to create a pair of functions E and D with the desired

properties mentioned above, and the added property that Eve would have to solve one of

these tremendously hard problems to break the code?

Around 1977/1978, three MIT researchers named Rivest, Shamir and Adleman figured out a

way to create an encryption/decryption method based on modular arithmetic. Their biggest

challenge was in finding a difficult-to-solve problem that could be adapted to cryptography.

In the end they hit on a very simple-sounding one: factoring.

Factoring seems easy because in every-day life we only try to factor small numbers. Numbers

with 2, 3 or 4 digits can be factored with just pencil and paper (and a handy list of primes).

For numbers with a few more digits, we can write a trivially simple program that will just try

all the possible factors – our computers are pretty fast and we get the results quickly.

But if we are dealing with integers that have hundreds of digits, this “try all the possible

factors” method of factoring is completely infeasible – because dividing one really large

number by another is a very slow process (just remember how time-consuming long division

is, compared to multiplication).

RSA realized that if we choose two really big primes and and multiply them together to

get , we can tell people the value of but nobody will be able to figure out and .

(Because factoring is hard.)

The idea is for Bob to create an function that can be made public (so both Alice and Eve can

see it), and the corresponding function that Bob keeps secret, which cannot be figured out by

somebody who knows . These two functions will make it possible for Alice to send messages

securely to Bob.

To turn this “factoring is hard” idea into a pair of functions and , we need to introduce a

bit of notation:

Let . Then we define

The symbol is the Greek letter phi. In the Greek language it is pronounced “fee” but most

mathematicians I have met pronounce it “fie” (rhymes with “try”)

Example: Let and . Then , and

Leonhard Euler was one of the most prolific and important mathematicians in history.

Among many other important results, he proved this theorem about :

Theorem: Let and be defined as above, and let be a number that is relatively prime

to . Then

Equivalently,

This result is crucially important to our discussion, so let’s explore it a bit. Remember that

 is just a number that we compute from . In the example above we had

So this theorem tells us that if is any number that is relatively prime to 91, then

Now the only factors of 91 are 7 and 13, so any number that does not have either 7 or 13 as a

factor will be relatively prime with 91.

For instance, we automatically know that , and , and

 , because none of those numbers are divisible by or . (I just picked ,

 and at random.) Most numbers in the set { } are relatively prime with . (The

exact answer is that numbers in this range are relatively prime with … and as we have

just seen, . This is not a coincidence, but proving it is not important to us right

now!)

The function is often called Euler’s totient function.

Now we’re going to use to pick two numbers that we will use to define and .

We want to find numbers and such that and are inverses in . In other words,

 in . In our standard notation, in

Finding and can be a non-trivial task when is very large, but we only have to do it

once. There are algorithms for computing inverses but they are outside the scope of this

course.

It turns out that we can use as our encryption, and as our decryption – good

thing we studied exponentiation in modular arithmetic!

So now we have in . We know this means

The next few steps are the essential core of the justification of RSA Cryptography.

Suppose and (ie. relatively prime with). Then

This is fantastic!

So we start with , raise it to a power, take that , and we end up with again. Can we

split the mathematical process into an E and a D function? Yes! Because can be

computed as a two-step process:

- first compute

- second compute

By what we have just shown, !!!

Let be the message that Alice wants to send, and assume that is an integer such that

 and is relatively prime with (we’ll address the reasonability of those assumptions

a bit later in these notes).

Let and let

I claim that these two functions have precisely the properties that we need:

- exactly “undoes” what does, so it decrypts the encoded message

- even if Eve knows , she cannot figure out (so she can’t decrypt messages)

We have already seen that the first claim is true:

For the second claim, let’s think about what Alice needs to know in order to send her message

to Bob. She needs to know and , but she doesn’t need to know or . Bob can post

and in a public location.

This means Eve knows the same things that Alice knows: and . Not only that - Eve can

also see when Alice sends it to Bob. But to decrypt the message she needs to know .

She knows that in but she doesn’t know

Eve doesn’t know because Bob keeps it secret. Now if Eve knew and , she could

easily compute …. but Bob keeps and secret too. Eve could

find and if she could factor … but factoring is hard!!!!! So Eve is defeated. She (like

Alice) knows how to encrypt and send messages to Bob, but she doesn’t know – and can’t

figure out – how to decrypt messages that are addressed to Bob.

So RSA cryptography is secure.

Note that if anybody ever discovers a fast algorithm for factoring very large numbers, RSA

cryptography will no longer be secure – and the world of e-commerce will come to a sudden

halt.

A few final thoughts on this before we do an example. So far all we have done is work out a

secure way to send messages to Bob. If Bob wants to send secure messages to Alice, she has

to do the same things he did:

- pick two large primes, and (I’m giving them subscripts to show they

belong to Alice)

- compute

- compute

- find and such that

- publish and

Now Bob (and anyone else) can send messages securely to Alice. If Bob wants to send

message to Alice, he computes and sends . When Alice receives , she

computes which turns back into

In general, if a group of people all want to send encrypted messages to each other using RSA

they each need to design their own and functions, and they each need to publish their

individual and values. Anyone wishing to send a secure message to person just looks

up and and uses those to encrypt the message. Then person uses their secret to

decrypt it.

Now what about the assumption that the message is an integer? We can convert any text

string to an integer by converting each letter to a two-digit number (for example A = 01, B=02,

etc.) and then just stringing the numbers together. So “ZEBRA” might become 2605021801.

We also assumed . If we are dealing with a long message that converts to an integer

, we can simply split the message into smaller pieces and encrypt them separately. We

also assumed that is relatively prime with . This is a very safe assumption because when

 and are large primes, the number of elements of that are not relatively prime with

is very tiny compared to . However it turns out that even if we are unlucky and

 , the encryption/decryption will still work (we’ll skip the proof of this – it’s

harder).

Finally, let’s do a full example.

Suppose Bob chooses and (remember, in real use these primes

would be hundreds of digits long)

Now Bob chooses in such that has an inverse. He just has to ensure that is

relatively prime with … easy enough to do since . We’ll say

Bob chooses .

Bob has to compute in … which turns out to be , so

Bob publishes the information

Suppose Alice wants to send the message to Bob

She computes and gets the result

(I used a spreadsheet – but since we studied how to do exponents in modular arithmetic you

know two different ways to do this!)

Alice sends to Bob.

Eve is frustrated – she knows she needs to decrypt this, but she can’t figure it out. She can’t

factor (ok, factoring is actually pretty easy … but if this were a huge integer it would

not be easy at all) so she cannot figure out and , which she needs in order to compute

… which she needs in order to figure out .

Bob computes …. and gets !!! Ta-dah!!!!!

Bob never has to change his and values unless he is worried that Eve might somehow

have discovered

Note that Alice and Bob don’t have to use the same values of n, or anything else. All they

have to agree on is they will both use RSA encryption.

So, are there any downsides to RSA? Unfortunately, yes. Even though we have studied

ways to compute efficiently, it is still true that we are dealing with really big

numbers. So both the “repeated squares” method and the “find cycles” method may take

quite a while to compute the encrypted form of the message … and decryption will also be

slow. For a lot of communication (email, for example) that may not be important. But if we

are trying to stream live video and/or audio the delay may not be acceptable.

Fortunately there is a compromise. There are lots of faster encryption methods that are quite

strong as long as Eve doesn’t know either or . (Remember, the strength of RSA is that

Eve can’t figure out even though is public knowledge.) In the popular PGP (Pretty

Good Privacy) encryption method , Alice and Bob start their conversation by using RSA (or

another similar public-key method) to agree on an pair of functions. They then use

and to encrypt the rest of the conversation. Since Eve can’t read the first part of the

conversation she doesn’t know what and are, so the rest of the conversation is quite

secure. PGP was first developed in 1991 – its history makes for fascinating reading. Over the

last three decades it has developed a lot and is now extremely powerful. Many email clients

include a built-in version, and the Free Software Foundation has developed an open-source

version of PGP – which is confusingly called GPG.

