
RSA Cryptography

The 1970’s were an important time in the development of the science of computing.  At the 

start of the decade Cook and Levin proved that there are some problems that are so hard that 

finding fast algorithms to solve them would be equivalent to giving our computers magical 

powers.  From the point of view of cryptographers, this class of problems was an enticing 

opportunity.  Would it be possible to create a pair of functions E and D with the desired 

properties mentioned above, and the added property that Eve would have to solve one of 

these tremendously hard problems to break the code?

Around 1977/1978, three MIT researchers named Rivest, Shamir and Adleman figured out a 

way to create an encryption/decryption method based on modular arithmetic.  Their biggest 

challenge was in finding a difficult-to-solve problem that could be adapted to cryptography.  

In the end they hit on a very simple-sounding one: factoring.

Factoring seems easy because in every-day life we only try to factor small numbers.  Numbers

with 2, 3 or 4 digits can be factored with just pencil and paper (and a handy list of primes).  

For numbers with a few more digits, we can write a trivially simple program that will just try 

all the possible factors – our computers are pretty fast and we get the results quickly.

But if we are dealing with integers that have hundreds of digits, this “try all the possible 

factors” method of factoring is completely infeasible – because dividing one really large 

number by another is a very slow process (just remember how time-consuming long division 

is, compared to multiplication).

RSA realized that if we choose two really big primes  and  and multiply them together to 

get , we can tell people the value of  but nobody will be able to figure out  and .

(Because factoring is hard.)

The idea is for Bob to create an  function that can be made public (so both Alice and Eve can

see it), and the corresponding  function that Bob keeps secret, which cannot be figured out by 

somebody who knows .  These two functions will make it possible for Alice to send messages 

securely to Bob.



To turn this “factoring is hard” idea into a pair of functions  and , we need to introduce a 

bit of notation:

Let  .   Then we define        

The    symbol is the Greek letter phi.  In the Greek language it is pronounced “fee”  but most 

mathematicians I have met pronounce it “fie”  (rhymes with “try”)

Example:  Let  and .  Then , and 

Leonhard Euler was one of the most prolific and important mathematicians in history.  

Among many other important results, he proved this theorem about :

Theorem:  Let  and  be defined as above, and let  be a number that is relatively prime 

to .  Then

Equivalently,           

  

This result is crucially important to our discussion, so let’s explore it a bit.   Remember that

 is just a number that we compute from .  In the example above we had

So this theorem tells us that if  is any number that is relatively prime to 91, then 

Now the only factors of 91 are 7 and 13, so any number that does not have either 7 or 13 as a 

factor will be relatively prime with 91.

For instance, we automatically know that , and  , and

  , because none of those numbers are divisible by  or .   (I just picked ,

 and  at random.)  Most numbers in the set { } are relatively prime with .  (The 

exact answer is that  numbers in this range are relatively prime with  … and as we have 

just seen,  .  This is not a coincidence, but proving it is not important to us right 

now! )



The function   is often called Euler’s totient function.

Now we’re going to use   to pick two numbers that we will use to define  and .

We want to find numbers  and   such that  and  are inverses in  .  In other words,

 in     .  In our standard notation,    in   

Finding  and  can be a non-trivial task when    is very large, but we only have to do it 

once.  There are algorithms for computing inverses but they are outside the scope of this 

course.

It turns out that we can use  as our encryption, and    as our decryption – good 

thing we studied exponentiation in modular arithmetic!

So now we have    in   .   We know this means    

The next few steps are the essential core of the justification of RSA Cryptography.

Suppose   and    ( ie.  relatively prime with ).   Then

This is fantastic!  



So we start with , raise it to a power, take that  , and we end up with   again.   Can we 

split the mathematical process into an E and a D function?  Yes!  Because  can be 

computed as a two-step process:   

- first compute 

- second compute 

By what we have just shown,  !!!

Let  be the message that Alice wants to send, and assume that  is an integer such that

  and  is relatively prime with   (we’ll address the reasonability of those assumptions

a bit later in these notes).

Let      and let     

I claim that these two functions have precisely the properties that we need:

-  exactly “undoes” what  does, so it decrypts the encoded message

- even if Eve knows , she cannot figure out  (so she can’t decrypt messages)

We have already seen that the first claim is true:  

For the second claim, let’s think about what Alice needs to know in order to send her message

to Bob.  She needs to know  and , but she doesn’t need to know  or  .  Bob can post  

and  in a public location.

This means Eve knows the same things that Alice knows:   and .  Not only that - Eve can 

also see  when Alice sends it to Bob.   But to decrypt the message she needs to know  .  

She knows that  in     but she doesn’t know   

Eve doesn’t know  because Bob keeps it secret.  Now if Eve knew  and , she could 

easily compute    …. but Bob keeps  and  secret too.   Eve could

find  and  if she could factor  … but factoring is hard!!!!!   So Eve is defeated.   She (like 

Alice) knows how to encrypt and send messages to Bob, but she doesn’t know – and can’t 

figure out – how to decrypt messages that are addressed to Bob.

So RSA cryptography is secure.

Note that if anybody ever discovers a fast algorithm for factoring very large numbers, RSA 

cryptography will no longer be secure – and the world of e-commerce will come to a sudden 

halt.



A few final thoughts on this before we do an example.   So far all we have done is work out a 

secure way to send messages to Bob.   If Bob wants to send secure messages to Alice, she has 

to do the same things he did:

- pick two large primes,   and    (I’m giving them  subscripts to show they 

belong to Alice)

- compute 

- compute 

- find  and  such that 

- publish  and 

Now Bob (and anyone else) can send messages securely to Alice.  If Bob wants to send 

message  to Alice, he computes and sends  .   When Alice receives , she

computes   which turns  back into  

In general, if a group of people all want to send encrypted messages to each other using RSA 

they each need to design their own  and  functions, and they each need to publish their 

individual  and  values.  Anyone wishing to send a secure message to person  just looks 

up  and  and uses those to encrypt the message.  Then person  uses their secret  to 

decrypt it.

Now what about the assumption that the message  is an integer?   We can convert any text 

string to an integer by converting each letter to a two-digit number (for example A = 01, B=02, 

etc.) and then just stringing the numbers together.  So “ZEBRA” might become 2605021801.

We also assumed  .   If we are dealing with a long message that converts to an integer

, we can simply split the message into smaller pieces and encrypt them separately.  We 

also assumed that  is relatively prime with  .   This is a very safe assumption because when

 and  are large primes, the number of elements of   that are not relatively prime with  

is very tiny compared to .  However it turns out that even if we are unlucky and

 , the encryption/decryption will still work (we’ll skip the proof of this – it’s 

harder).



Finally, let’s do a full example.

Suppose Bob chooses  and (remember, in real use these primes 

would be hundreds of digits long)

Now Bob chooses  in     such that  has an inverse.  He just has to ensure that  is 

relatively prime with  … easy enough to do since  .  We’ll say 

Bob chooses .

Bob has to compute  in  … which turns out to be , so   

Bob publishes the information   

Suppose Alice wants to send the message  to Bob

She computes     and gets the result   

(I used a spreadsheet – but since we studied how to do exponents in modular arithmetic you 

know two different ways to do this!)

Alice sends   to Bob.

Eve is frustrated – she knows she needs  to decrypt this, but she can’t figure it out.  She can’t 

factor  (ok, factoring  is actually pretty easy … but if this were a huge integer it would 

not be easy at all) so she cannot figure out  and , which she needs in order to compute 

… which she needs in order to figure out .

Bob computes   …. and gets   !!!  Ta-dah!!!!!

Bob never has to change his  and  values unless he is worried that Eve might somehow 

have discovered 

Note that Alice and Bob don’t have to use the same values of n, or anything else.  All they 

have to agree on is they will both use RSA encryption.



So, are there any downsides to RSA?   Unfortunately, yes.  Even though we have studied 

ways to compute  efficiently, it is still true that we are dealing with really big 

numbers.   So both the “repeated squares” method and the “find cycles” method may take 

quite a while to compute the encrypted form of the message … and decryption will also be 

slow.  For a lot of communication (email, for example) that may not be important.  But if we 

are trying to stream live video and/or audio the delay may not be acceptable.

Fortunately there is a compromise.  There are lots of faster encryption methods that are quite 

strong as long as Eve doesn’t know either  or .  (Remember, the strength of RSA is that 

Eve can’t figure out  even though  is public knowledge.)   In the popular  PGP (Pretty 

Good Privacy) encryption method , Alice and Bob start their conversation by using RSA (or 

another similar public-key method) to agree on an  pair of functions.  They then use  

and  to encrypt the rest of the conversation.  Since Eve can’t read the first part of the 

conversation she doesn’t know what  and  are, so the rest of the conversation is quite 

secure.  PGP was first developed in 1991 – its history makes for fascinating reading.  Over the 

last three decades it has developed a lot and is now extremely powerful.   Many email clients 

include a built-in version, and the Free Software Foundation has developed an open-source 

version of PGP – which is confusingly called GPG.


