
More Orderings

Linear Extensions

Given a finite poset P = ( X,  ) , a natural question to ask is “can we find a linear order L that 

includes P?”  It turns out that the answer is Yes, we always can.  In fact we can go further.

(Why is this a natural question?  Because one very common application of partial orderings is 

to represent the relationships between subtasks in a large project … either something like the 

Apartment Cleaning example, or something like a dependency diagram for a large software 

system.  Frequently we need to process every item in the set, but we only have one processor 

(in the Apartment Cleaning example the processor was you, trying to get all the subtasks 

completed).  We need to put the full set of items into a sequence so that the lone processor can

work through them without ever trying to do a subtask before its predecessors have been 

completed.)

First, a definition:  Let P = ( X,  ) be a poset.  A linear extension of P is a linear order 

L = ( X, ’ ) where          ’

The last three symbols on that line may look they can’t possibly be meaningfully used in that 

way.  But remember that a partial order is just a relation, and a relation is just a set of ordered 

pairs.   So when we write         ’,   we mean “ the set of ordered pairs that defines  “ is a 

subset of “ the set of ordered pairs that defines ‘ “ 

This definition of linear extension is our way of formalizing the concept of a linear order 

including a particular poset.  If L is a linear extension of P, then L includes all the relationships

(that is to say, the ordered pairs) in P, and also enough new relationships (ordered pairs) to 

eliminate all incomparabilities.

In class I planned to present an informal description of how we extend a partial ordering to a 

linear ordering by “squooshing” the chains together.  It’s easy to visualize:  push the sides of 

the Hasse Diagram together until all the vertices are in a vertical line.  Now put in the lines 

required to make a linear ordering of the vertices from bottom to top.  Since squooshing is not

a well-defined mathematical operation, I’ll be a bit more rigourous in these notes – but the 

concept remains the same:  if x and y are not in a chain together, we can squoosh them 

together with x above y or with y above x.



Theorem:  Let P = ( X,  )  be a finite partial order in which x and y are incomparable.  Then 

there exists a linear extension  of P such that in , x < y.   There also exists a linear 

extension  of P such that in , y < x

The proof of this simple theorem looks scary – there are tables and cases and strange symbols.

But it’s really just working through a bunch of very simple arguments.

Proof:  Let P = ( X,  ) be a finite partial order in which x and y are incomparable (that is, 

neither x  y  nor  y   x )

We define a new partial order   on X as follows:

x   y

if a  b     then    a  b  

if a  x   and  y  b    then    a   b 

Ok,   certainly includes x  y,  and it includes all of     ... but is it a partial order?

Reflexive:    is reflexive because  is reflexive



Anti-symmetric:   Suppose a  b   and b  a.  We need to show a = b

a  b  can be true in two ways:  either  a  b   or     a  x   and  y  b

b  a   can be true in two ways: either  b  a   or     b  x   and  y  a

This gives us four cases to consider in order to show that a = b



b  a b  x   and  y  a

a  b Case 1 Case 2

a  x  and y  b Case 3 Case 4

Case 1:  a  b   and   b  a   :   In this case   a = b because    is anti-symmetric

Case 2:  a  b   and  b  x   and  y  a  :   we can combine these three facts to get

 y  a  b  x  from which we see y  x ... but this

is impossible since x and y are incomparable.  Thus

this case cannot exist.

Case 3:  b  a   and  a  x   and  y  b  :   as for Case 2, this case cannot exist .

Case 4: a  x  and y  b  and  b  x   and  y  a  :  from  y  a   and   a  x  we get   y  x, 

     which is impossible ... so this case cannot 

     exist either.

Thus only Case 1 is possible, and in Case 1 we saw a = b

Therefore a = b, and therefore  is anti-symmetric.

Proof that   is transitive follows a similar pattern.  (Exercise: complete this part of the 

proof.)

Thus  is a partial order on X, and it contains fewer incomparable pairs than  does.  If  is 

a linear order (no incomparable pairs at all) then we have extended  to a linear order, as 

required.  If  is not a linear order, we can choose an incomparable pair w and z and extend

 to    ... and if  is not a linear order, we can extend it to , etc.  Eventually we must 

eliminate all incomparable pairs, ending up with a linear order that contains the ordered pair 

(x,y) as stated in the theorem.

Now by switching x and y throughout all of the preceding argument, we will get a linear 

order that contains (y,x) as an ordered pair.

Thus the theorem is proved.



Dimension

As we now know, every poset that is not a linear order can be extended to at least two 

different linear extensions.  

Observation:  Let P = ( S,  ) be a poset.  Let x and y be distinct elements of S.  If x  y, then x 

precedes y in all linear extensions of P.  Conversely, if x and y are incomparable elements of 

S, there exists at least one linear extension of P in which  x  y, and at least one linear 

extension of P in which  y  x.    Our proof of the previous theorem justifies this observation.

This suggests an interesting question: if we are given the set of all linear extensions of a poset,

can we reverse-engineer it and determine the original poset?

The answer is yes!  

For each pair of distinct items x and y, we can check to see if x precedes y in all the linear 

extensions ... if so, we know  x  y.  Similarly if  y precedes x in all the linear extensions, we 

know  y  x.   However, if there is at least one linear extension in which x precedes y, and at 

least one in which y precedes x, then x and y are incomparable.  Thus we can determine 

exactly which pairs are related, and how they are related.



The next question is: do we always need the full set of linear extensions of a poset to 

reconstruct the poset?

The answer (which surprised me the first time I learned it) is no!  

Consider this example:

The poset on the left has exactly three linear extensions – they are shown on the right.  But we

can reconstruct the poset using just the first and third linear extensions!
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Here they are:

To see that these give all the information needed, let’s look at b and c.    We see that b 

precedes c in both linear extensions, so we know b  c.  We can deduce the same thing for 

pairs such as d and e, a and b, etc.

But consider b and d.  B precedes d in one of the linear extensions, and d precedes b in the 

other.  Thus we know b and d are incomparable in P.  Similarly we can discover that c and d 

are incomparable in P.
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Definition:  If P is a poset and R = { } is a set of linear extensions of P that allows 

us to completely reconstruct P, we call R a realizer for P.

Note that every poset has at least one realizer since the full set of linear extensions of any 

poset is a realizer for that poset.

Definition: We have seen that for a given poset, some realizers are smaller than others.  Let P 

be a poset and let R be a realizer for P with the property that there is no smaller realizer for P. 

If the number of extensions in R is k, then we say that P has dimension k  (which we 

sometimes write as dim P = k)

For the poset in the example above, we can see there is no realizer of size 1 (because we need 

at least two extensions to show that b and d are incomparable).  Since we have found a 

realizer of size 2, we now know that the dimension of this poset is 2.



So, how high can the dimension of a poset be?  Consider this example:

The poset is shown on the left ... none of the elements are related to each other.   Since any 

linear order of {a,b,c,d,e} is a valid linear extension of this poset, we see that there are 5! = 120 

linear extensions of this poset.  And yet the two extensions on the right in the diagram are a 

realizer for the poset!  (Make sure you see why).  So once again, this poset has dimension 2.

Another example:

Again we see that the two linear extensions on the right form a realizer for the poset, (and 

again we see that the dimension of the poset must be > 1 since there are incomparable 

elements) so we see this poset also has dimension 2.
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Perhaps you are forming an hypothesis that all posets have dimension = 1 (which is the case if

the poset is a linear order) or dimension = 2  ... which is the case for all the other posets we 

have looked at.

Sadly the situation is more complicated than that.   Consider this example:

I claim that the poset shown here has dimension at least 3.  We need at least one linear 

extension that has b1 preceding a1 ... but in this linear extension we must have a2 preceding 

b1 which precedes a1 which precedes b2  … so a2 precedes b2.  Similarly, this linear extension

must have a3 preceding b3.  Therefore we need another linear extension with b2 preceding a2 

(so that we can tell they are incomparable in the partial ordering) ... and in this linear 

extension as in the first one, a3 must precede b3.  Therefore the realizer must contain a third 

linear extension with b3 preceding a3 (since these elements are incomparable, a realizer must 

contain at least one linear extension with a3 below b3, and at least one linear extension with 

b3 below a3).

Three such linear extensions are shown in the diagram, and we can see that these form a 

realizer for this poset.   Therefore this poset has dimension 3.  

We can generalize this example to have elements  to   and  to     -  these posets are 

called the standard examples  - the one shown above is called   because it has 3 elements in 

each of its two subsets.



It turns out that the standard example of size n  (ie.  ) has dimension n.

Thus there is no limit to how large the dimension of a poset can be.

Let’s consider one more question – in some ways, the most interesting of all:  Given a poset P, 

can we determine its dimension?

If P is a linear order, dim P = 1

We can determine if dim P = 2 using an algorithm that is (unfortunately) outside the scope of 

this course.  This algorithm runs fairly quickly.  You can learn more about this here:  

https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230020103 but be prepared to learn a lot 

of terminology!

But beyond that ... nobody knows if there exists any efficient way to answer the question 

“Does dim P = k?” where k is any integer  3.  In fact, this has been identified as one of the 

most difficult questions to answer in all of computational mathematics.

This is a tiny foretaste of a topic that will be explored in future courses.  The world of 

problems that we can solve using computers seems to split into two classes: problems that we

can solve quickly, and problems that are so difficult that we don’t believe we will ever be able

to solve them quickly.  And sometimes the difference between the two classes is as simple as 

changing a 2 to a 3.  People have spent decades trying to figure out why.

https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230020103

