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Question 1 : (10 marks)

Let    and   be functions, where ,  and  are finite sets.

 

Prove the following statement:

If  and  are both onto, then 

Use any valid proof technique:

Solution:  

If , then the Pigeonhole Principle tells us there are no 

onto functions from  to .  Therefore 

Similarly, 

Therefore 

Marking:

For a solution similar to the above 10/10

It is not necessary to mention the PHP

by name.

For a sound alternative solution (Proof by 10/10

Contradiction, for example)

For a solution that takes a good approach 8/10

(for example, induction is not a good approach

here) but contains a significant error.

For a solution that shows understanding of 6/10

the question but goes off the rails due to poor



choice of proof technique

For a solution that shows understanding of the 5/10

question (meaning of “function”, meaning of “onto”,

etc.) but goes no further

For a solution that shows limited understanding of the 3/10

question (for example, understanding “function” but

not “onto”)

For a solution that shows no understanding of the 0/10

question.



Question 2 : (10 marks)
 

Prove the following using any valid proof technique:

 

Solution:

Direct proof:

 



PBI:

Base case:  n = 1        

Inductive step: Suppose     for some 

Now consider k+1

PMCE : 

Let k be the minimal counterexample.

Observe that , so   

, so  is not a c.e.

 is not a c.e.  CONTRADICTION



Marking:

For any complete proof (including proofs that 10/10

contain trivial errors such as an incorrect subscript)

For a proof that shows good understanding of 8/10

the chosen proof method but has a significant flaw

For a solution that shows understanding of 6/10

the question but goes off the rails due to poor

choice of proof technique

For a solution that shows understanding of the 5/10

question (meaning of “summation”, etc.) but goes 

no further

For a solution that shows limited understanding of the 3/10

question 

For a solution that shows no understanding of the 0/10

question.



Question 3 : (10 marks)

(a)  [3 marks] Find a value of    that makes the following statement true:

All integers  can be written as      where  and  are positive 

integers.

Solution:

The statement is true for  

Marking:

For 16 3/3

For any integer  > 16 2/3

For any integer < 16 1/3

For no answer 0/3



(b) [7 marks] Use either Proof by Minimum Counter-Example or Proof By 

Induction to prove that your value of   makes the statement true.

Solution:

PMCE:   

Let k be the minimum counterexample

Observe that 16 = 3*2 + 5*2

17 = 3*4 + 5*1

18 = 3*1 + 5*3

 is not a c.e.

  for some positive integers a and b

 is not a c.e.     CONTRADICTION



PBI:

Base cases:

16 = 3*2 + 5*2

17 = 3*4 + 5*1

18 = 3*1 + 5*3

Inductive step:  Assume the statement is true for all values of  in the 

range  for some  

Consider 

    (since )

 for some positive  and 

 the statement is true for  

 the statement is true     



Marking:

For any complete proof using either technique 10/10

(including proofs that contain trivial errors 

such as an incorrect subscript)

For a proof that shows good understanding of 8/10

the chosen proof method but has a significant flaw

in the proof.

For a solution that shows understanding of 6/10

the question but limited understanding of the

chosen proof technique.

For a solution that shows understanding of the 5/10

question (meaning of “summation”, etc.) but goes 

no further

For a solution that shows limited understanding of the 3/10

question 

For a solution that shows no understanding of the 0/10

question.



Question 4 :  (10 Marks)

Let   be permutations in  

(a)  [5 marks]

Prove that  is unique.   That is, prove that 

if  and  ,   then  

Solution:

Assume   and 

Marking:

For any complete solution (including, for example 5/5

a solution using proof by contradiction, etc.)

For a proof that shows good understanding of 3/5

the question (permutations, composition of 

permutations, inverses)  but has a significant flaw

in the argument

For a solution that shows limited understanding of the 1/5

question 

For a solution that shows no understanding of the 0/5

question



(b)  [5 marks]

We use  to represent  

For example, 

Prove         

Solution:

Suppose   for some 

By composing each side with      times, we reduce the left side to   

and the right side to , giving the required result  

In notation

Marking:

as for part (a)



Question 5 : (10 Marks)

We call a permutation  a derangement if 

For example 

   is a derangement    

 is not a derangement because 

(a)  [5 marks]

Let  be a permutation of  where 

Prove :  if   is not a derangement, the cycle representation of  must contain at 

least two cycles.   Use any valid proof technique.

Solution:

Assume  is not a derangement.   Then  for some 

In cycle representation for ,  forms a cycle of length 1:  (i)

Therefore there must be at least one more cycle to contain the other 

elements of the permutation.

Marking:

as for Question 4



(b)  [5 marks]

Prove or disprove this statement:

If   is a derangement, then  is also a derangement

Solution:

Let  be a derangement 

Recall that    means     and vice versa

(  just undoes )

Suppose  is not a derangement.

  for some 

 is not a derangement CONTRADICTION

 is a derangement

OR

let  be a derangement

 the cycle representation of  has no cycles of length 1

We know the cycle representation of  just consists of the same 

cycles as , reversed

 the cycle representation of  has no cycles of length 1

 there is no i such that 

 is a derangement



Marking:

as for Question 4


	TOTAL

