Question 1: (10 Marks)

Define \leq **on CISC courses by**

 $x \preceq y$ iff x = y or x is a prerequisite of y

For example $203 \le 203$, $121 \le 124$, etc

Let S be the following (somewhat reduced) set of CISC courses, and let R be the following set of \leq connections.

S = { 102, 121, 124, 203, 204, 235 }

 $R = \{ (102, 203), (102, 204), (121, 124), (121, 203), (121, 204), (124, 235), (203, 235) \}$

- (a) [6 marks] List all the pairs that need to be added to R to make (S, R) a poset
- Solution: The missing pairs are (102,102),(121,121),(124,124),(203,203),(204,204),(235,235),

(102,235),(121,235)

Marking: 3 marks for adding the reflexive pairs
3 marks for adding the transitive pairs
part marks for knowing what types of pairs are missing, but
not getting them right (2 if the error is small, 1 if the error is large)
0 for no answer or not understanding the question

(b) [4 marks] Determine the height and width of the poset

Solution: The height is the size of the largest chain: 3 The width is the size of the largest antichain: 3

Marking: correct height: 2 marks knowing what height means, but getting the wrong answer: 1 correct width: 2 marks knowing what width means, but getting the wrong answer: 1

Students are not required to state the meaning of height and width in order to get full marks

Let $S = \{1, 2, 3, 4\}$ and let F be the set of all functions from S to S.

Note that F contains functions which are bijections as well as functions that are not.

We define the relation \leq on *F* as follows:

Let f and g be functions in F. $f \preceq g$ iff $f(i) \leq g(i) \quad \forall i \in S$

(where \leq has the standard "less-than-or-equal" meaning)

For example, if f and g are given by this table, then $f \preceq g$

i	f(i)	g(i)
1	2	3
2	3	3
3	1	2
4	2	4

(a) [3 marks] Find and show two functions f and g such that neither $f \leq g$ nor $g \leq f$ is true. (That is, find two incomparable functions.)

Solution (one of many): f(1) = 1, f(2) = 2, f(3) = 1, f(4) = 1g(1) = 2, g(2) = 1, f(3) = 1, f(4) = 1

Marking:	Stating two incomparable functions:	3 marks
	Knowing what to do but not able to do it:	2 marks
	Not clearly knowing what to do:	1 mark
	No answer or completely wrong answer:	0 marks

(b) [9 marks] Prove that $P = (F, \preceq)$ is a poset.

Solution:

For any function $f, f(i) \leq f(i) \forall i \in S$		
Therefore $f \leq f$ Thus \leq is reflexive		
Suppose $f \preceq g$ and $g \preceq h$		
$\Rightarrow \forall i \in S, f(i) \leq g(i) \text{ and } g(i) \leq h(i)$ $\Rightarrow \forall i \in S, f(i) \leq h(i)$ $\Rightarrow f \leq h$ Thus \leq is transitive		
c: Suppose $f \preceq g$ and $g \preceq f$		
$\begin{array}{l} \Rightarrow \forall \ i \in S, f(i) \leq g(i) \textit{and} g(i) \leq f(i) \\ \Rightarrow \forall \ i \in S, f(i) = g(i) \\ \Rightarrow f = g \\ \textit{Thus} \ \preceq \textit{is antisymmetric} \end{array}$		
3 marks for each property: for a sound argument 3 for an argument that demonstrates good understanding of the property for an argument that demonstrates weak understanding of the property for an argument that demonstrates no understanding of the property	2 1 0	
	For any function $f, f(i) \le f(i) \forall i \in S$ Therefore $f \le f$ Thus \le is reflexive Suppose $f \le g$ and $g \le h$ $\Rightarrow \forall i \in S, f(i) \le g(i)$ and $g(i) \le h(i)$ $\Rightarrow \forall i \in S, f(i) \le h(i)$ $\Rightarrow f \le h$ Thus \le is transitive c: Suppose $f \le g$ and $g \le f$ $\Rightarrow \forall i \in S, f(i) \le g(i)$ and $g(i) \le f(i)$ $\Rightarrow \forall i \in S, f(i) = g(i)$ $\Rightarrow f = g$ Thus \le is antisymmetric 3 marks for each property: for a sound argument 3 for an argument that demonstrates good understanding of the property for an argument that demonstrates weak understanding of the property for an argument that demonstrates no understanding of the property	

(c) [3 marks] Either find the minimum element of P, or explain why P does not have a minimum element.

Solution:

Consider f(1) = 1, f(2) = 1, f(3) = 1, f(4) = 1

For any function g, $f(i) \leq g(i) \quad \forall \ i \in S$, so $f \preceq g$

Thus f is the minimum element.

Marking:	Stating the correct minimum :	3
	Correctly defining "minimum" but	
	not correctly finding it	2
	Stating there is no minimum	1
	No answer	0

Question 3: (10 Marks)

Here is a Hasse Diagram representing a poset. Also given is a linear extension of the poset. Find and show another linear extension such that the two linear extensions form a realizer for the poset.

Solution:

In the given linear extension, g is above a and d. It must be below them in the other extension, while still being above b, c, e, and f. This fixes g in the third position from the top.

Similarly, f must be below a,b,c,d,e and g - f must be in the bottom position.

a and d must be above g, so they must occupy the first and second positions. d must be above a, so d must be in the top position.

This leaves b, c and e, and the positions just above the bottom. b must be below the other two, so b must occupy the lowest of these three positions. In the given linear extension e is above c, so in the new extension c must be above e.

This gives the final order as	d
	а
	g
	С
	е
	b
	f
	-

Marking:	Stating the correct linear extension	10
	Stating an incorrect linear extension	18
	- depending how close they are to	
	the correct answer	
	No answer or completely wrong answer	0
	Students are not required to show how they	
	found a correct solution.	

Let $P = (X, \preceq)$ and $Q = (Y, \preceq^*)$ be two posets, where X and Y are finite sets, and \preceq and \preceq^* represent two different relations.

Suppose $X \cap Y \neq \emptyset$. **Prove that** $R = (X \cap Y, \preceq \cap \preceq^*)$ **is a poset.**

(Recall that a relation is a set of ordered pairs, and the intersection of two relations is the set of ordered pairs that belong to both relations.)

Solution:

Reflexive: \leq *is reflexive, so it contains all reflexive pairs for elements of* $X \cap Y$. *The same is true of* \leq^* *Therefore* $\leq \cap \leq^*$ *contains all these pairs. Thus* $\leq \cap \leq^*$ *is reflexive.*

Transitive: Suppose a, b and c are all in $X \cap Y$, and (a, b) and (b, c) are both in $\preceq \cap \preceq^*$. Then both pairs are in \preceq , so $(a, c) \in \preceq$ (because \preceq is transitive). Similarly, both pairs are in \preceq^* so $(a, c) \in \preceq^*$. Thus $(a, c) \in \preceq \cap \preceq^*$. Therefore $\preceq \cap \preceq^*$ is transitive.

Antisymmetric: Suppose (a,b) and (b,a) are both in $\leq \cap \leq^*$, with $a \neq b$ This implies both these pairs are in $\leq \dots$ which means \leq is not antisymmetric. CONTRADICTION. Therefore $\leq \cap \leq^*$ is antisymmetric

Marking:

Reflexive: s	ound argument	3 marks
Transitive: s	ound argument	4 marks
Antisymmetric:	sound argument	3 marks

For each part, give part marks based on demonstrated understanding of the properties and the question. **Question 5 : (5 Marks)**

In this question we will use the expression $a \preceq b$ where a and b are positive integers to mean "a divides b"

For example, $3 \leq 3$, $13 \leq 26$, $4 \leq 12$ etc

Let S = {2, 3, 4, 8, 24}, and let P = (S, \leq) You do not have to prove that P is a poset.

Let T = { {1}, {1,2}, {3}, {1,2,3}, {1,2,3,4,5}, {5} }, and let Q = (T, \subseteq) You do not have to prove that Q is a poset.

Show that P and Q are isomorphic. (Hint: posets are isomorphic if they have the same Hasse Diagram.)

Solution: This question contains an error

Marking: Any attempted answer 5 marks

S should be {2,3,4,5,12,60}

IF the question had been stated correctly, a correct answer would have been to draw the Hasse diagrams for the two posets and show that they are identical in structure (which is clear just from looking at them).