Question 1: (10 Marks)
Define \preceq on CISC courses by
$x \preceq y$ iff $x=y$ or x is a prerequisite of y
For example $203 \preceq 203,121 \preceq 124$, etc

Let S be the following (somewhat reduced) set of CISC courses, and let R be the following set of \preceq connections.
$S=\{102,121,124,203,204,235\}$
$R=\{(102,203),(102,204),(121,124),(121,203),(121,204),(124,235),(203,235)\}$
(a) [6 marks] List all the pairs that need to be added to R to make (S, R) a poset

Solution: The missing pairs are $(102,102),(121,121),(124,124),(203,203),(204,204),(235,235)$, $(102,235),(121,235)$

Marking: 3 marks for adding the reflexive pairs 3 marks for adding the transitive pairs part marks for knowing what types of pairs are missing, but not getting them right (2 if the error is small, 1 if the error is large)
0 for no answer or not understanding the question
(b) [4 marks] Determine the height and width of the poset

Solution: The height is the size of the largest chain: 3
The width is the size of the largest antichain: 3

Marking: correct height: 2 marks
knowing what height means, but getting the wrong answer: 1 correct width: 2 marks
knowing what width means, but getting the wrong answer: 1

Students are not required to state the meaning of height and width in order to get full marks

Question 2 : (15 marks)

Let $S=\{1,2,3,4\}$ and let F be the set of all functions from S to S.
Note that F contains functions which are bijections as well as functions that are not.

We define the relation \preceq on F as follows:
Let f and g be functions in $F . \quad f \preceq g \quad$ iff $\quad f(i) \leq g(i) \quad \forall i \in S$ (where \leq has the standard "less-than-or-equal" meaning)

For example, if f and g are given by this table, then $f \preceq g$

i	$f(i)$	$g(i)$
1	2	3
2	3	3
3	1	2
4	2	4

(a) [3 marks] Find and show two functions f and g such that neither $f \preceq g$ nor $g \preceq f$ is true. (That is, find two incomparable functions.)

Solution (one of many): $f(1)=1, f(2)=2, f(3)=1, f(4)=1$

$$
g(1)=2, g(2)=1, f(3)=1, f(4)=1
$$

Marking: Stating two incomparable functions:
Knowing what to do but not able to do it: Not clearly knowing what to do:
No answer or completely wrong answer:

3 marks
2 marks
1 mark
0 marks
(b) [9 marks] Prove that $P=(F, \preceq)$ is a poset.

Solution:

Reflexive: \quad For any function $\quad f, f(i) \leq f(i) \forall i \in S$
Therefore $f \preceq f$
Thus \preceq is reflexive
Transitive: \quad Suppose $f \preceq g$ and $g \preceq h$
$\Rightarrow \forall i \in S, f(i) \leq g(i)$ and $g(i) \leq h(i)$
$\Rightarrow \forall i \in S, f(i) \leq h(i)$
$\Rightarrow f \preceq h$
Thus \preceq is transitive

Antisymmetric: \quad Suppose $f \preceq g$ and $g \preceq f$

$$
\begin{aligned}
& \Rightarrow \forall i \in S, f(i) \leq g(i) \quad \text { and } g(i) \leq f(i) \\
& \Rightarrow \forall i \in S, f(i)=g(i) \\
& \Rightarrow f=g
\end{aligned}
$$

Thus \preceq is antisymmetric

Marking: 3 marks for each property: for a sound argument 3 for an argument that demonstrates good understanding of the property for an argument that demonstrates weak understanding of the property 1 for an argument that demonstrates no understanding of the property
(c) [3 marks] Either find the minimum element of P, or explain why P does not have a minimum element.

Solution:

Consider $f(1)=1, f(2)=1, f(3)=1, f(4)=1$
For any function $g, \quad f(i) \leq g(i) \quad \forall i \in S$, so $f \preceq g$
Thus f is the minimum element.

Marking:	Stating the correct minimum : Correctly defining "minimum" but	3		
\quad not correctly finding it			$\quad 2$	
:---				
Stating there is no minimum				

Question 3: (10 Marks)

Here is a Hasse Diagram representing a poset. Also given is a linear extension of the poset. Find and show another linear extension such that the two linear extensions form a realizer for the poset.

Solution:

In the given linear extension, g is above a and d. It must be below them in the other extension, while still being above b, c, e, and f. This fixes g in the third position from the top.

Similarly, f must be below a, b, c, d, e and $g-f$ must be in the bottom position.
a and d must be above g, so they must occupy the first and second positions. d must be above a, so d must be in the top position.

This leaves b, c and e, and the positions just above the bottom. b must be below the other two, so b must occupy the lowest of these three positions. In the given linear extension e is above c, so in the new extension c must be above e.

This gives the final order as d

- depending how close they are to the correct answer
No answer or completely wrong answer 0
Students are not required to show how they found a correct solution.

Question 4: (10 Marks)
Let $P=(X, \preceq)$ and $Q=\left(Y, \preceq^{*}\right)$ be two posets, where X and Y are finite sets, and \preceq and \preceq^{*} represent two different relations.

Suppose $X \cap Y \neq \emptyset$. Prove that $R=\left(X \cap Y, \preceq \cap \preceq^{*}\right)$ is a poset.
(Recall that a relation is a set of ordered pairs, and the intersection of two relations is the set of ordered pairs that belong to both relations.)

Solution:

Reflexive: \preceq is reflexive, so it contains all reflexive pairs for elements of $X \cap Y$. The same is true of \preceq^{*} Therefore $\preceq \cap \preceq^{*}$ contains all these pairs. Thus $\preceq \cap \preceq^{*}$ is reflexive.

Transitive: Suppose a, b and c are all in $X \cap Y$, and (a, b) and (b, c) are both in $\preceq \cap \preceq^{*}$. Then both pairs are in \preceq so $(a, c) \in \preceq$ (because \preceq is transitive). Similarly, both pairs are in \preceq^{*} so $(a, c) \in \preceq^{*}$. Thus $(a, c) \in \preceq \cap \preceq^{*}$. Therefore $\preceq \cap \preceq^{*}$ is transitive.

Antisymmetric: Suppose (a, b) and (b, a) are both in $\preceq \cap \preceq^{*}$, with $a \neq b$ This implies both these pairs are in $\preceq .$. which means \preceq is not antisymmetric. CONTRADICTION. Therefore $\preceq \cap \preceq \preceq^{*}$ is antisymmetric

Marking:

| Reflexive: sound argument | 3 marks |
| :--- | :--- | :--- |
| Transitive: \quad sound argument | 4 marks |
| Antisymmetric: sound argument | 3 marks |

For each part, give part marks based on demonstrated understanding of the properties and the question.

Question 5 : (5 Marks)

In this question we will use the expression $a \preceq b$ where a and b are positive integers to mean "a divides b"

For example, $3 \preceq 3,13 \preceq 26,4 \preceq 12$ etc
Let $S=\{2,3,4,8,24\}$, and let $P=(S, \preceq)$ You do not have to prove that P is a poset.

Let $T=\{\{1\},\{1,2\},\{3\},\{1,2,3\},\{1,2,3,4,5\},\{5\}\}$, and let $Q=(T, \subseteq)$ You do not have to prove that Q is a poset.

Show that P and Q are isomorphic. (Hint: posets are isomorphic if they have the same Hasse Diagram.)

Solution: This question contains an error

Marking: Any attempted answer 5 marks
S should be $\{\mathbf{2 , 3 , 4 , 5 , 1 2 , 6 0}\}$

IF the question had been stated correctly, a correct answer would have been to draw the Hasse diagrams for the two posets and show that they are identical in structure (which is clear just from looking at them).

