1. Let G be a tree on 5 vertices. Prove that G can have at most one vertex with degree ≥ 3.
2. Find a graph G such that the largest clique of G and the largest independent set of G are both of size 4. What can we say about the sizes of the largest clique of \overline{G} and the largest independent set of \overline{G}?
3. Prove that for any graph G, either G is connected, \overline{G} is connected, or both.
4. Suppose a graph G is connected and has an equal number of edges and vertices. Show that G contains exactly one cycle.
5. Consider the graph illustrated below.

a) Show that it is four-colourable.

b) Show that after removing any edge from the graph it becomes three-colourable.