
CISC-235
Assignment 2

January 21, 2020

In this assignment you will implement a Stack class and then use it to write non-recursive

versions of recursive algorithms.

Part 1:

Implement a Stack class based on using a one-dimensional array to hold the stack

elements. When created, every Stack should use a 10-element array.

The Stack class must allow the push, pop, and isEmpty operations. However the push

operation must check to see if the array is full before adding the new value. If the array is

full, push must create a new array that is bigger than the current one, copy the existing

stack into the new array, and then add the new value at the end.

There are different strategies for choosing the size of the new array. One popular method

is to double the size of the existing array. Thus if the original 10-element array is filled, it

is replaced by a 20-element array. If that fills, the new replacement array has 40 elements,

etc.

An alternative strategy is to increase the size of the array by a constant amount each time it

needs to grow.

There is a trade-off: if you grow by potentially large increments (as in the doubling

strategy) you run the risk of allocating far more space than is needed. But if you grow by

small increments, you may have to repeat the grow op (ha ha) very frequently.

Why not just make the array huge at the start? Memory is cheap, isn’t it? Yes, but it’s

never a good idea to be wasteful with resources. The more compact our solutions are, the

easier it will be to implement them in environments where resources are scarce. We don’t

want to have a huge array sitting around mostly empty.

For your implementation, choose any growth strategy that seems reasonable. The study of

optimizing this process is fascinating but outside of the scope of CISC-235. You may want

to look up the strategy that Python uses for its built-in list data structure (which is really

just an array in disguise).

Part 2:

Consider this recursive function that takes an integer parameter n

F(n):
if n >= 2:

F(n/2) # integer division
print n

Using a stack, we can write a non-recursive function to get the same result:

SF(n):
S = new Stack()
S.push(n)
current = n
while current >= 2:

current = current/2 # integer division
S.push(current)

while not S.isEmpty():
print S.pop()

Perform the same transformation on each of the following recursive functions (there are

four). For each one, write a non-recursive equivalent function that uses your Stack class.

Run the given algorithms and your non-recursive versions on the specified data for each

function to demonstrate that they are equivalent. Either write the output to a file or save

it with a screenshot. The file or screenshot must have your name and student number

visible.

Include this evidence of correctness in your submitted zip file.

Function 1:

This recursive function prints the famous Collatz sequence, starting at any given positive

integer n. (Actually it prints the sequence in reverse order.)

F(n): # n is an integer
if n > 1:
 if n % 2 == 0:

F(n/2) # integer division
 else:

F(3*n + 1)
print n

Show the results of running the original F(n) and your non-recursive function on all values

in the set

Function 2:

F(n): # n is an integer
if n >= 6:

F(n/3) # integer division
F(2*n/3) # integer division

print n

Show the results of running the original F(n) and your non-recursive function on all values

in the set

Note: for Functions 3 and 4, you may want to redefine your Stack so that each element of

the stack consists of a pair of integers.

Function 3:

F(a, b): # a and b are integers
if a <= b:

m = (a+b)/2 # integer division
F(a, m-1)
print m
F(m+1, b)

Show the results of running the original F(n) and your non-recursive function on these

pairs of values

Function 4:

F(a, b): # a and b are integers
if a <= b:

m = (a+b)/2 # integer division
F(a, m-1)
F(m+1, b)
print m

Show the results of running the original F(n) and your non-recursive function on these

pairs of values

Part 3:

In Part 1 you chose a strategy for increasing the size of the array used to hold the Stack

elements. Using the four functions that you wrote in Part 2 as evidence, would you now

say that your choice was a good one? Why or why not? You may wish to mention the

number of times the array size needed to be increased, the total number of times values

had to be copied from one array to another, or any other measurable effect of your chosen

strategy.

Logistics:

You may complete the programming part of this assignment in Python, Java, C or C++.

You must submit your source code, properly documented according to standards

established in CISC-121 and CISC-124. You must also submit the evidence that your non-

recursive functions are correct. Your source code must contain the following statement: “I

confirm that this submission is my own work and is consistent with the Queen's

regulations on Academic Integrity.”

Combine your files into a .zip file for uploading.

You are required to work individually on this assignment. You may discuss the problem

in general terms with others and brainstorm ideas, but you may not share code. This

includes letting others read your code or your written conclusions.

The due date for this assignment is 11:59 PM, February 9, 2020. Submission will be

through onQ.

