
CISC-235

Winter 2020

Assignment 4

A certain Canadian university has decided to get in on the super-hero film game by creating a

set of interconnected movies which will be collectively called the HOTNCU (Harvard of the

North Cinematic Universe). Each movie will focus on the thrilling adventures of one or more

super-heroes who all happen to be students at the mysterious Institute Q, situated in the far-

away mythical land of Ratooni. (The University Administration is very proud of having come

up with this clever disguise for the actual university.) The projected number of movies in the

series will be slightly less than 2300. Teams are already at work scripting all these movies.

Each movie under development has been assigned a project name to preserve secrecy. Each

project name is a 5-letter English word. A sample set of project names is provided in the file

HOTNCU_project_names_2020.txt. There is no way this is the actual set of movie project

names – those are secret!

You have been assigned the task of creating a data structure that can

• support insert and search operations

• provide access to each item with an average of d steps, where d is a small constant.

For more information on this, see the section titled “Computing the Average Search

Sequence Length” below.

The delete operation is optional. You are not required to implement it.

Your hard-earned data structures expertise has convinced you that neither a sorted array nor

a binary tree can meet this requirement, so you have settled on using a hash table.

The HOTNCU Project Director was previously a Computer Science professor and she has

taken an interest in your project. She has already decided that you are required to use some

form of open addressing. She is aware that your table will need to be > 2300 in size but she

wants you to keep it small. (It’s easy to store all the values in a table that is very close in size

to the number of keys. The problem is that with a smaller table, the number of collisions will

grow. It’s also easy to get very good performance by using a huge table. The challenge is to

get good performance with a small table.)

She wants you to explore at two forms of open addressing: quadratic probing and double

hashing. For each method she wants you to experiment with different hashing functions and

different combinations of values to determine a table size that lets you achieve the required

performance standard.

Part 1:

Decide how you will convert the project names into usable key values. This may involve

converting each letter in a project name to an integer, or simply treating each project name as

a bit string and converting that entire bit string into an integer. You will find a wealth of

ideas on the Internet. Whatever method you decide on, explain why you chose it and

remember to cite your source if it is not your own creation.

Part 2:

Implement a hash table where collisions are resolved by quadratic probing.

Use an hashing function of your own choice. It is perfectly acceptable to just use the

“string-to-integer conversion” method that you designed for Part 1. It is also acceptable to

take the output of your string-to-integer conversion and apply another hashing function to it

(such as “mid-square” or “multiplication method” - as explained in the course notes). You

must implement the algorithm yourself. Using downloaded code from external sources is not

acceptable – but writing your own code based on a published algorithm is fine (remember to

cite your sources). You can also create your own hashing function from scratch – feel free to

be creative. You may wish to experiment with different functions to minimize the

number of collisions in your table.

Now do this:

 :

try to find the smallest table size that lets you insert all the project names with an

average search sequence length1 that is

You may want to try different combinations of and such as

 or other combinations

A table size must be rejected if your insertion method fails to insert one or more of the

project names into the table.

Hint: start with a small table and try bigger and bigger tables until you find one that holds

all the keys and satisfies the average search path length requirement.

1 See the section titled “Computing the Average Search Sequence Length”

Part 3:

Repeat Part 2 but with Double Hashing instead of Quadratic Probing. You may want to try

different combinations of and .

You are free to choose any hashing functions you like for and , but as with Part

2 you must implement them yourself. You can reuse functions that you used in Part 2 if you

want to.

One approach to creating and trying different hashing functions is to start with one that

involves a constant number in some way – perhaps as a multiplier, or an exponent. If

changing the constant value produces different results, this gives a way to easily create new

hashing functions. Here’s an example:

is a constant

 # is the fractional part of

is the table size

This function involves the constant . We can easily create a new hashing function using a

different constant:

 :

is a different constant

 # is the fractional part of

is the table size

You can certainly use these functions in your experiments ... but I strongly encourage you to

do some research and find some others. These sample functions don’t seem to perform very

well on the project name set – or perhaps I just haven’t found good and values for them.

Part 4:

Let QP(d) be the size of table required to store all the project names with an average search

sequence length d , using Quadratic Probing to resolve collisions.

Let DH(d) be the size of table required to store all the project names with an average search

sequence length d , using Double Hashing to resolve collisions.

Hypothesis: for d 2, DH(d) < QP(d)

Consider the results of your experiments.

Do they support the hypothesis?

Note: Since there are infinitely many variations of quadratic probing and double hashing, a

small experiment such as this one cannot give strong evidence either way. A more

comprehensive comparison would be much too time-consuming for this assignment ... but if

you have some free time I think it might be interesting to do a deep dive into comparing

Quadratic Probing with Double Hashing. Theory predicts that DH should be better, but

maybe in practice there’s not much difference ...

Second note: In this assignment I have asked you to measure the average search sequence

length. The maximum search sequence length is also of interest. In my own experiments on

this data set, I usually find that when the average search sequence length is , the

maximum search sequence length is around 24 ! This means that most keys don’t collide at

all, but a few keys collide a lot.

Computing the Average Search Sequence Length

Every time your program looks at the contents of a table address, that counts as a step in the

current operation. So if you are inserting a value and you try addresses 17, 5, and 83 before

finally inserting the value in address 36, that insertion sequence has four steps.

Since we don't know which keys are most likely to be searched for, we can assume that each

key is equally likely to be the target of a search. This means that the average number of steps

in a search sequence will be exactly the same as the average number of steps in an

insertion sequence. To compute that average we can add up the number of steps made

during all the insertions and divide by the number of values that were inserted.

Logistics:

You may complete the programming part of this assignment in Python, Java, C or C++.

You must submit your source code, properly formatted and documented You must also

submit a PDF file summarizing the results of your experiments and containing your

conclusions. All files must contain your name and student number, and must contain the

following statement: “I confirm that this submission is my own work and is consistent with

the Queen's regulations on Academic Integrity.” Combine your files into a .zip archive for

uploading.

You are required to work individually on this assignment. You may discuss the problem in

general terms with others and brainstorm ideas, but you may not share code. This includes

letting others read your code or your written conclusions. The course TAs will be available to

advise and assist you regarding this assignment.

The due date for this assignment is 11:59 PM, March 29, 2020.

