Binary Trees

Binary Tree: a rooted tree in which each vertex has at most two children. The children (if any) are labelled as the left child and the right child. If a vertex has only one child, that child can be either the left child or the right child.

Binary trees can also be defined recursively:

A rooted tree T is a binary tree if:

- T is an empty tree, or
- T consists of a root vertex with a left subtree and a right subtree, each of which is a binary tree

This recursive definition prefigures the pattern of most algorithms we use on this data structure, as we will see below.

There are at least two options for implementing binary trees. For the next while we will focus on the obvious method: **objects with pointers**.

A **Binary_Tree_Vertex** object needs:

- **value** (which could be a single value, a collection or list of information, or a key value and associated data, etc.)
- **left_child** (in a typed language, this is a pointer to a **Binary_Tree_Vertex** object)
- **right_child** (same)

and may also have pointers to siblings, parent, root, etc.

A **Binary_Tree** object needs:

- **root** (in a typed language, this is a pointer to a **Binary_Tree_Vertex** object)

and may also have attributes such as "height" and "number_of_vertices"
We will adopt the common “<object>.<attribute>“ notation ... so if T is a **Binary_Tree** object, we will refer to T’s root as **T.root** and if v is a **Binary_Tree_Vertex** object, we will refer to **v.value**, **v.left_child** and **v.right_child**

Traversals of Binary Trees

One of the things we do frequently with binary trees is **traverse** them, which means "visit each vertex of the tree". There are four popular methods for traversing binary trees. We will illustrate them on this tree, which has a token stored in each vertex.
The first tree traversal algorithm we will look at is called **In-Order Traversal**. The basic idea is to explore the left subtree, then look at the current vertex, then look at the right subtree. We can write this recursively:

```python
In_Order(v):  # v is a vertex in a binary tree
    if v == nil:
        return
    else:
        In_Order(v.left_child)
        print v.value
        In_Order(v.right_child)
```

If we apply this to the tree shown above, the result is

\[4 + 3 \times 10 - 2 \times 8 \]

Well that’s interesting – this creates an arithmetic expression in standard infix form.

The next traversal algorithm to look at is **Pre-Order Traversal**. The basic idea here is to look at the current vertex, then explore its left subtree, then explore its right subtree. In pseudo-code, the recursive form of this is:

```python
Pre_Order(v):  # v is a vertex in a binary tree
    if v == nil:
        return
    else:
        print v.value
        Pre_Order(v.left_child)
        Pre_Order(v.right_child)
```

If we apply this to the tree shown above, the result is

\[- + 4 \times 3 10 \times 2 8 \]

We didn’t spend much time talking about “prefix notation” for arithmetic expressions but it’s not complicated. In postfix notation each operator follows its operands ... so in prefix notation each operator precedes its operands. The expression shown above is correct prefix notation for the expression we are working on. It would be interpreted (by a talking computer) as ... “Oh a minus sign. I need two numbers. Now I have a plus sign – I need two numbers for that. There’s a 4 – that’s one number for the addition. Now I have a multiplication sign – I need two numbers for that. There’s a 3. There’s a 10. I have the two numbers for the multiplication: 3*10 = 30. Now I have the second number for the addition: 4 + 30 = 34. I still need a second number for the subtraction. I see a multiplication – I need two
numbers. There’s a 2. There’s an 8. Now I can compute $2 \times 8 = 16$. 16 is the second number I need for the subtraction so I can compute $34 - 16 = 18$. Now I need a cool refreshing beverage.”

We talked about how postfix notation is deeply related to the way expressions are actually evaluated at the assembly language level in a computer (first we load the values into registers, then we apply the operation to them). By contrast, prefix notation is closely related to the way we express method calls in high level programming. For example we might write something like

```plaintext
compute_triangle_area(x, power(a.max(b,c)), sqrt(z))
```

where the three arguments are the lengths of the sides of a triangle. It is reasonable to call this prefix notation because we name each function and then list the values to which it is being applied (some of which are the result of other method calls).

Having seen **In-Order** and **Pre-Order** it will be no surprise that the next traversal algorithm is called **Post-Order Traversal**. As you can guess, the idea here is to explore the left subtree, then the right subtree, then the current vertex. As a recursive method it looks like this:

```python
Post_Order(v):
    # v is a vertex in a binary tree
    if v == nil:
        return
    else:
        Post_Order(v.left_child)
        Post_Order(v.right_child)
        print v.value
```

If we apply this to the tree shown above, the result is

```
4 3 10 * + 2 8 * -
```

which we can see is a correct postfix version of the arithmetic expression we are working with.

Now this is pretty impressive! We were able to store the expression in a simple data structure that let us extract all three ways of writing the expression (infix, prefix and postfix) using simple traversal algorithms.

You might want to think about how to implement these binary tree traversal algorithms non-recursively. Here’s a hint: use a stack as well as the tree.

The fourth traversal algorithm that is widely used is called **Breadth-First Search** - we will
look at it in some detail later, but for now we can give an explanation of the idea: explore the

tree one level at a time – so first we visit the root, then its children, then their children, then
theirs, and so on down to the bottom of the tree.

Applying this to our tree gives

\[- + * 4 * 2 8 3 10\]

This is not as useful in terms of evaluating the expression because it is difficult to match the
operations up with the operands – but breadth-first search has many other applications.

Let's consider the complexity of **In-Order**, **Pre-Order** and **Post-Order**. If we let \(n \) be the
number of vertices in the binary tree, you can see that in each of the three algorithms each
vertex gets visited exactly once. Furthermore, the event that brings us to a vertex, (ie
executing a recursive call in any one of the three algorithms), is exactly equivalent to
following an edge of the tree. Since we know there are \(n-1 \) edges in a tree (we proved this in
CISC-203), the number of such operations is \(n-1 \). Thus we see that no matter what the actual
structure of the tree (i.e. whether it has many levels or few levels), these algorithms all take
\(O(n) \) time.

In case you don’t remember (or didn’t like) the proof from CISC-203 that the tree has \(n-1 \)
edges, here is a different one:

Recall that in a rooted tree, every edge joins a parent to a child, and every vertex except the
root has one edge that connects it to its parent. Thus there are \(n-1 \) edges joining vertices to
their parents, and there aren't any other edges ... so the number of edges is \(n-1 \).

Now we turn to the most popular application of binary trees ... one that is found throughout
computing.
Binary Search Trees
aka
Lexically Ordered Binary Trees

Suppose we have a collection S of values and we want to perform the “search” operation. It comes in two flavours:

Given x, is x in S?

Given x, what is the location of x in S?

As always in this course, our concern is choosing the best structure in which to store S to facilitate answering these questions.

Most often we are interested in the second question because we want to do something with x, such as access or modify information associated with x. If we are really only interested in the first question, there are structures that are particularly suited to that ... as we will see later (dramatic foreshadowing).

First let’s try to establish the classification of the search problem. To do so we will be a bit specific about the types of algorithm we will consider: we will focus on comparison-based algorithms – ie algorithms that are based on comparing the target value x to elements of S.

Suppose we have a comparison-based search algorithm A that is guaranteed to find the correct answer for a target value x and a set S. We can think of the steps this algorithm follows as:

compare x to some element of S
depending on the comparison result ...
 compare x to some other element of S
 depending on the comparison result ...
 compare x to some other element of S
 etc.

until we either find the value x or determine that it cannot be in S.

We can illustrate the set of all possible “execution traces” of A with a so-called “execution tree”
In this tree we are showing three possible outcomes of each comparison. In a standard if-then-else language structure each comparison only has two outcomes, but we can simulate a three-outcome comparison with 2 two-outcome comparisons, so we can think of each circle in the execution tree as containing 2 two-outcome comparisons.

Each execution of the algorithm (for a specific target value x and set S) will follow a branching path down through this execution tree until it either finds x or determines that it is not there. Note that the only way to be absolutely sure that x is in S is to actually find an element of S that equals x. Thus the execution tree must contain at least as many “comparison nodes” as there are elements of S - if there is some element of S that is never compared to x, then we cannot know for sure whether or not that element equals x. (We can think of an evil adversary who knows our algorithm and knows we are searching for x – the adversary arranges things so that x is placed in an element of S that our algorithm doesn’t look at – so we never find x even though it is there.)

So we know the execution tree for our algorithm A must contain at least n comparison nodes. But each execution of A will only visit some of those nodes. The question becomes “What is
the longest sequence of comparisons A will ever need to complete a search?" If we can determine this as a function of n, this will give us a lower bound on the complexity of A. And since A is a completely unspecified comparison-based search algorithm, it will give us a lower bound on all comparison-based search algorithms.

Our question is equivalent to asking what the length of the longest path is from the root to the bottom of the execution tree. This will be different for each possible search algorithm A, but we can put a lower bound on it. We know the execution tree for A contains at least n comparison nodes. The top level of the tree has 1 node. The next level has no more than 2 nodes. The level below that has no more than 4 nodes (we say “no more than” because some of the branches may be dead ends). Thus if there are k levels, there are no more than

\[1 + 2 + 4 + \ldots = 2^0 + 2^1 + 2^2 + \ldots + 2^{k-1} \] nodes in the tree.

This gives

\[\sum_{i=0}^{k-1} 2^i \geq n \] since we know the tree contains at least n nodes.

But the left hand side is exactly equal to \(2^k - 1 \), so we get \(2^k - 1 \geq n \) which gives \(k \geq \log(n + 1) \) which gives \(k > \log n \)

So we conclude that the execution tree for every comparison-based search algorithm has at least \(\log n \) levels ... so no comparison-based search algorithm can have complexity less than \(\Theta(\log n) \). In other words, comparison-based searching is in \(\Omega(\log n) \)
We are already familiar with a structure that lets us search for x very efficiently – our old friend, the lowly one-dimensional array. If we store S in sorted order in an array, we can search S in $\Theta(\log n)$ time, using binary (or even trinary) search.

So ... end of story? We have found an algorithm whose complexity matches the Ω classification of the problem. There’s nothing left to be done, right? Well, that’s not quite true.

If our set S is fixed and unchanging, a sorted array is perfectly fine. But if we ever have to add or delete a value, the array is not a good choice at all: inserting or deleting values in a sorted array takes $\Omega(n)$ time.

The question then becomes: is there a data structure that allows searching, adding and deleting to all be completed in $\Theta(\log n)$ time?

The answer is yes, and of course since this discussion is lodged in the “Binary Tree” section of the course you will have guessed that this is the structure. But to facilitate the search operation we need to be more precise about how the values in S will be stored in a binary tree.

When we store information in a binary tree there is no rule that says the information must be stored according to a specific pattern or rule. However, in order to use a binary tree to address the “search” problem we enforce a simple rule for the placement of the values in the tree: small values go to the left and large values go to the right. We can formalize this as follows:

Binary Search Tree (BST): a binary search tree is a binary tree in which each vertex contains an element of the data set. The vertices are arranged to satisfy the following additional property: at each vertex, all values in the left subtree are \leq the value stored at the vertex, and all values stored in the right subtree, $>$ the value stored in the vertex. Note that we use "$\leq" for the left subtree to accommodate the possibility of having duplicate values in the tree.

In order to make a case for using a BST we need to determine the complexity of algorithms for the search, insert and delete operations, and then argue that they are superior to the algorithms for the same operations on an array or list.
BST_Search

Because of the ordering of the values in the vertices, searching a BST works just like binary search on a sorted array. We start at the root - if it contains the value we want, we are done. If not, we go to the left child or right child as appropriate.

Our design goal for implementing this data structure (and all subsequent ones) is that the user - in this case, the program which is calling the search function - should not need to know any details about the implementation of the structure. For example, the user should not need to know that the root of the tree is identified by an attribute called "root". For this reason, the function header is just \textbf{BST_Search(T,x)} where T is the tree to be searched and x is the search value. Of course if this function has been implemented as a method belonging to the tree, the function call would probably look like \texttt{T.BST_search(x)}.

We need to decide which flavour of search we are going to implement ("if x is there, return True" versus "if x is there, return its location"). We will opt for the latter since it is neither easier nor more difficult with the BST structure. \textbf{If x is in T, we return a pointer to the vertex containing it. If x is not in T, we return a null pointer.}

Here is a simple iterative version of the binary search algorithm for a tree T. We will assume that this is an instance method of the Tree class, so the variable “root” is an attribute of the object invoking the method.

```python
def BST_Search(x):
    current = root
    while current != nil:
        if current.value == x:
            return current
        elif current.value < x:
            current = current.right_child
        else:
            current = current.left_child
    return nil    # x is not in the tree
If we don’t like multiple return points we can write the algorithm like this:

```python
def BST_Search(x):
 current = root
 while (current != nil) && (current.value != x):
 if current.value < x:
 current = current.right_child
 else:
 current = current.left_child
 return current
```

It’s a bit more concise but it doesn’t do any less work.

We can also implement the search algorithm recursively. We can use a "wrapper" function so that the interface does not change (the user should not need to know whether our algorithm is iterative or recursive). In this version, `BST_Search(x)` and `rec_BST_Search(x)` are both instance methods of the Tree class.

```python
def BST_Search(x):
 // this method initiates the recursion
 return rec_BST_Search(root,x)

def rec_BST_Search(current,x):
 if current == nil:
 return nil
 elif current.value == x:
 return current
 elif current.value > x:
 return rec_BST_Search(current.left_child,x)
 else:
 return rec_BST_Search(current.right_child,x)
```

You should convince yourself that these algorithms do indeed achieve the same result. It is easy to see that they have the same complexity since they visit exactly the same sequence of vertices.

Which of the two is better? To my eye the recursive version is marginally more elegant, but that’s debatable. The iterative version is probably a bit more efficient - this is because a function call, in real life, takes longer to execute than an iteration of a loop. This means that even though the two algorithms have the same complexity, the constant multiplier for the iterative version may be smaller than the constant multiplier for the recursive version.

(At least, this is the conventional wisdom. As I discovered by experimenting in Python with recursive versus iterative implementations of Quicksort, it seems that recursive implementations of some algorithms may be faster than iterative implementations of the
same algorithms. I encourage you to conduct some experiments to explore this question for yourself.)

Another consideration is that it is often easier to prove correctness of recursive algorithms because we can use a simple proof by induction.

Regardless of the difference in speed, I prefer the recursive version. As we will see when we look at more sophisticated algorithms for BSTs, there are times when using recursion is much, much cleaner than using iteration. Thinking about trees as recursive objects is a valuable exercise. Sometimes, even if the eventual goal is an iterative algorithm the best way to get there is to start by constructing a recursive algorithm, then convert the recursive calls into loops.

We can think of BST_Search() – either the recursive or the iterative version – as a modification of one of the three traversal algorithms we explored earlier. **Which one?**

We spent a bit of time in class looking at the process of building a BST from a set of numbers. We discovered that to find the proper place to insert a new value, we use the same sequence of branching (ie compare the new value to the root and then go either left or right as appropriate) and we eventually get to a point where the new value can be added as a new leaf of the tree. Using this method, each new value is placed exactly where it needs to be for the search algorithm to successfully find it. This means that the actual BST that we end up with is completely determined by the order in which we insert the values.

This means that we can write the insert algorithm as a simple modification of the search algorithm. That is what we will do on the next page.
To find the proper insertion point, we simply search for the value, with the modification that if we find the value already present we continue the search (since we are allowing duplicates in our tree) - thus we will inevitably reach a point where we "fall off" the tree. The point at which we fall off the tree is the unique location (ie. there is no other alternative) for the new leaf containing the new value.

One iterative version of the algorithm looks something like this. Again, I am presenting this as an instance method of the Tree class so “root” is an attribute of the tree. Note that we have to treat an empty tree as a special case because the new vertex (containing the new value) becomes the root. In all other cases it is attached as a child of an existing vertex.

```python
def BST_Insert(x):
 new_vertex = new Binary_Tree_vertex(x)
 // this creates a new vertex Object, stores the value x in // it, and calls it new_vertex
 // now we figure out where to put it
 if root == nil:
 root = new_vertex
 else:
 current = root
 boolean done = false
 while not done:
 if x > current.value: // x belongs on the right side
 if current.right_child == nil:
 // the new vertex needs to be
 // the right child of current
 current.right_child = new_vertex
 done = true
 else: // keep going down the tree
 current = current.right_child
 else: // x belongs on the left side
 if current.left_child == nil:
 // the new vertex needs to be
 // the left child of current
 current.left_child = new_vertex
 done = true
 else: // keep going down the tree
 current = current.left_child
```

```
Without the comments it looks like this:

```python
def BST_Insert(x):
    new_vertex = new Binary_Tree_Vertex(x)
    if root == nil:
        root = new_vertex
    else:
        current = root
        boolean done = false
        while not done:
            if x > current.value:
                if current.right_child == nil:
                    current.right_child = new_vertex
                    done = true
                else:
                    current = current.right_child
            else:
                if current.left_child == nil:
                    current.left_child = new_vertex
                    done = true
                else:
                    current = current.left_child

I wouldn't actually use this method since the recursive method is much cleaner. Behold!

def BST_Insert(x):
    root = rec_BST_Insert(root,x)

def rec_BST_Insert(current,x):
    if current == nil:
        return new Binary_Tree_Vertex(x)
    elif x > current.value:
        current.right_child = rec_BST_insert(current.right_child,x)
    else:
        current.left_child = rec_BST_insert(current.left_child,x)
    return current

I remember feeling a sense of awe when I first saw this – it looks too simple to be correct (we were easily impressed in the Dark Ages). It makes beautiful use of the recursive structure of the tree to eliminate the need to treat the root as a special case, and it does away with the nested ifs. Furthermore it illustrates a very sound design principle for recursive algorithms that modify binary trees:

A method that potentially modifies a tree should return a pointer to the top of the modified tree, even if it didn’t change.
```
The value of this is that we can apply this principle at every vertex in the search path (that is, it applies to subtrees as well as to the whole tree). We call the recursive method on either the right or left child of the current vertex and simply attach the returned pointer to the modified subtree in place of whatever was there before.

In our insertion algorithm, in almost all cases this will be the same connection as was already there, but in the one crucial situation where we have found the insertion point an existing nil pointer gets replaced by the pointer to the new Vertex. Then we work our way back out of the recursion, re-attaching the vertices as we go.

See how this works at the root: we call the recursive method on the subtree that starts at the root (ie the whole tree) and *whatever* we get back as the top of the modified tree is made the root. If the tree was empty, this will be a pointer to the new Vertex. If the tree was not empty, it will be a pointer to the previous (and unchanged) root Vertex. Either way, it is correct.

Starting on Monday we will look at more complex algorithms for modifying trees, in which the subtrees may be very different after the changes have been made. At that point the power of saying “I know the recursive call will return a pointer to the top of the fixed subtree, so I can just attach it and return” will become more apparent.