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Determining “Big-O” Classification

In class I glossed over some basic details that relate to constructing a timing function for an 

algorithm.  In these notes I cover these steps in some detail.  They are very straightforward 

and should be already familiar.

To determine the timing function for an algorithm we count the fundamental operations as a 

function of the size of the input.  But when we do this, we usually just count the operations 

that involve the actual data.  (There are exceptions.  For example, in Assignment 1 you are 

asked to count function calls.)  In other words we ignore things like index variables and 

execution control operations.  As we will see, we don’t even need to be completely precise in 

our counting.

Consider this algorithm, which is written in pseudo-code that I just made up.  Notice that I’m 

leaving out all declarations.

CODE OPERATIONS

A1: n = read() 2   (1 I/O and 1 assignment)

for i = 1 to n:

A[i] = read() 2*n (1 I/O and 1 assignment, 
 repeated n times)

We don’t count any of the operations relating to the loop management because they don’t 

involve the data.

So we would write the timing function for A1 as 

(Note for purists: the size of the input here is actually n+1 since that is the total number of 

read actions we execute.  For our purposes here, calling it n is fine.)



Now two more simple algorithms:

CODE OPERATIONS

A2: n = read() 2   (1 I/O and 1 assignment)

for i = 1 to n:

A[i] = read() 2*n (1 I/O and 1 assignment, 
 repeated n times)

for i = 1 to n:

for j = 1 to n:

print A[i] + A[j] 2*n^2 (2 ops, n^2 times)

So we would write the timing function for A2 as 



CODE OPERATIONS

A3: n = read() 2   (1 I/O and 1 assignment)

for i = 1 to n:

A[i] = read() 2*n (1 I/O and 1 assignment, 

 repeated n times)

B[i] = 2*A[i] 2*n (1 I/O and 1 assignment, 

 repeated n times)

So we would write the timing function for A3 as 

Our goal is to use the timing functions as a way of comparing the efficiency of algorithms.  

But as we have already seen, they are somewhat approximate because they don’t count every 

single operation.  So instead of comparing the explicit timing functions for different 

algorithms, we use the timing functions to collect algorithms into groups.  Then to compare 

two algorithms, we compare the groups they are assigned to.  

We group algorithms together based on the growth-rate of their timing functions.  To 

illustrate this we can look at the the three algorithms above and see what happens when we 

repeatedly double the value of n (i.e. double the size of the input).

1 4 6 6

2 6 14 10

4 10 42 18

8 18 146 34

16 34 546 66

Etc.

Now how fast are these timing functions growing?  Let’s look at the ratios for successive 

values in the columns.  For A1, the ratios are      etc.  We can see that these 

ratios are getting closer and closer to to 2 ... can you see why they will never quite reach 2?

For A3, the sequence of ratios is almost identical (it’s just missing the  term) so it has the 

same behaviour.



For A2, the sequence of ratios is  ... it’s a bit harder to see the pattern.

The ratios work out to (approximately) 2.3, 3, 3.5, 3.7 ... and if we went further, we would see 

that the ratios approach 4 but never quite reach it.

So when we double the size of the input (ie. the size of the input increases by a factor of 2),

 and  also increase by a factor of (slightly less than) 2, but  increases by a factor of

(slightly less than) 4.

Experiment:  What if we try increasing the size of the input by a factor of 3?  That is, start 

with n = 1, then n = 3, then n = 9, 27, 81, etc. You can work it out, but I’ll jump to the results:

 and  also increase by a factor of (slightly less than) 3, and  increases by a factor 

of (slightly less than) 9.

In general, we find that if the input  increases by a factor of ,  and  also increase by 

(slightly less than) a factor of  .   We can write this as

     and     

Similarly, we find that when  increases by a factor of ,   increases by (slightly less than) 

a factor of .   We can write this as   



We got to those conclusions by observation, but we can reach the same conclusion 

algebraically.  For example, we can write 

            

and we see that   is always    

Let’s focus on  .  We have seen that it grows linearly (ie at the same rate) as n grows.  

Can we use that information to give any information about the actual value of ?

Suppose there is some particular value  for which we can determine that

  for some positive constant .   Now consider  where   

From our previous discussion, we know  

and from there it is a simple step to 

Now if we replace “ ” by a generic “ ”, we get   

 

Are there such an  and constant ?  Yes!  We can see that if we let  and , the 

requirements are satisfied.

Now what about  ?  You can work out that the same property holds (though you cannot 

use the same value for  )



But what about ?    

Suppose we start by establishing that for some value  ,    for some 

constant 

Now we can consider .   From our previous analysis, we know

which gives

 

Now if we replace “ ” by “ ” we get

         

.... which does not fit the same pattern as we saw for    and   .  In fact it is kind of 

confusing because it still has a  in it ... but remember that we used  to replace 

and if       then     ... and we can use this to replace the   in the right hand

side!  This gives

     

i.e.       

Since  is a constant and  is also a constant,  is a constant.  Thus



Was there anything particular about the timing functions that we used?  Not really.

Suppose an algorithm A has timing function 

where the a_i values are constants.

Claim:    such that 

Proof:   Suppose not.   Then  

As n increases, each term in the sum on the right gets smaller, and in fact gets arbitrarily close

to 0.  Thus there is a value of  for which each term in the sum is    .   For this value of n 

the sum on the right hand side is   ... which is a contradiction.  Therefore such an   

exists.

ie  

Let  and  be non-negative valued functions on the set of non-negative numbers.  If 

there are constants  and  such that      then we say

The significance of this is that as n gets large, the growth-rate of f(n) is no greater than the 

growth-rate of g(n).  In other words, the growth of g(n) is an upper bound on the growth of 

f(n).



Putting all of this together, we find that 

     and 

    and 

 

which looks like a pretty clear distinction between  and the other two …

but is it?  Can we be sure that  is not also in  ?  Let’s check that out.

Suppose .   Then there exist constants n_0 and c such that 

ie

But , the left hand side is positive so the inequality does not hold for all    (note

that it makes no difference which of  and  is larger)

Therefore 

And now, finally, we are sure that  does not belong to the same class of function as   

and  


