
20200114

There are several complexity classes that we encounter frequently. Here is a table listing the

most common ones.

Dominant Term Big-O class Description

 (a constant) O(1) constant time

O(log n)
logarithmic

time

O(n) linear time

O(n * log n) n log n time

O()
quadratic time

 or time

O()
cubic time

 or time

 Where k is a constant O()
polynomial

time

 where k is a constant > 1
O()

exponential

time

O() factorial time

Combinations of Functions

If , and

 then

 and

So far this should all be very familiar. But O classification is just the small first step in the

field of computational complexity. There are many other ways of grouping functions

together based on the resources (time and/or space) they require. We will consider two more:

Omega classification and Theta classification.

Omega Classification

Big O classification gives us an upper bound on the growth-rate of a function (that is,

 tells us that grows no faster than grows), but it doesn't tell us

anything about a lower bound on the growth-rate of .

Your first reaction to this observation might well be "why would we care about a lower bound

on the growth-rate? We use this computational complexity stuff to measure the worst-case

running time of an algorithm ... and for worst-case analysis, all we need is an upper bound."

Before we explain why lower-bound analysis is important, we will define exactly what we

mean by it and how it works.

Definition: Let and be functions. If there exist constants and with c > 0 such

that

 then (is the Greek letter “Omega”)

Note that this is almost exactly the same as the definition of Big O except that the

" " has become " "

As with Big O classification, we can see that is actually a class of functions, all of

which grow at least as fast as grows. We can also see that there is a hierarchy of Omega

classes, just as there is a hierarchy of Big O classes. For example, suppose .

 This means "growth-rate of " "growth-rate of ". But since "growth-rate of "

"growth rate of ", we can conclude that "growth rate of " "growth rate of ",

which is equivalent to saying that .

In fact, if , then .

(Note the parallel to Big O: if , then)

When determining the Big O classification for we try to find the smallest function

such that . Conversely, when determining the classification for we

try to find the largest function such that .

In class we did a couple of examples. Here’s another:

Let

We know that . It’s also very easy to see that ... we can let c =

0.0001 and it is immediately clear that .

Now is it possible that ?

If this were the case, then there would exist a positive constant such that

i.e.

but we can easily see that this is impossible: even if is very small, as gets large there will

come a point beyond which is so

, which would give ... which is

not possible.

Thus

This example illustrates a useful fact: if is a polynomial, then the Big O class and the

class for are identical.

But this is not always the case. For example, consider this function:

A(n):
 if n % 2 == 0:
 for i = 1..n^2:
 print '*'
 else:
 for i = 1..n:
 print '*'

Let be the time required to execute A(n). If you plot for n = 1, 2, 3, ... you will

see that it has a zig-zag shape. The tops of the zigs occur when is even, and they grow at

the same rate as . It is easy to see that . However, the bottoms of the

zags, which occur when is odd, do not show this behaviour - they grow at the same rate as

n.

Referring back to our previous definitions, we are now able to say that and

also ... and neither of these can be improved: there is no lower O class for

, and no higher class for .

This example demonstrates that an algorithm's Big O class may be different from its class.

If it turns out that we can show an algorithm's complexity is in and in ,

then we get very excited - it means that gives both an upper and a lower bound on the

growth-rate of the time required by the algorithm. Basically it means we know exactly how

fast the algorithm's time requirement grows. This is so amazingly wonderful that we give it a

special name:

Theta Classification

If and , we say .

