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There are several complexity classes that we encounter frequently.  Here is a table listing the 

most common ones.

Dominant Term Big-O class              Description

 (a constant)  O(1) constant time

O(log n)
logarithmic 

time

O(n) linear time

O(n * log n) n log n time

O( )
quadratic time

      or  time

O( )
cubic time

      or  time

 Where k is a constant O( )
polynomial 

time

     

    where k is a constant > 1
O( )

exponential 

time

O( ) factorial time

Combinations of Functions

If    , and 

            then  

            and  

So far this should all be very familiar.  But O classification is just the small first step in the 

field of computational complexity.  There are many other ways of grouping functions 



together based on the resources (time and/or space) they require.  We will consider two more:

Omega classification and Theta classification.

Omega Classification

Big O classification gives us an upper bound on the growth-rate of a function (that is,

  tells us that  grows no faster than  grows), but it doesn't tell us 

anything about a lower bound on the growth-rate of .  

Your first reaction to this observation might well be "why would we care about a lower bound

on the growth-rate?  We use this computational complexity stuff to measure the worst-case 

running time of an algorithm ... and for worst-case analysis, all we need is an upper bound."

Before we explain why lower-bound analysis is important, we will define exactly what we 

mean by it and how it works.

Definition:  Let  and  be functions.   If there exist constants  and  with c > 0 such 

that

                         

                    then (  is the Greek letter “Omega”)

Note that this is almost exactly the same as the definition of Big O except that the                      

" " has become " "



As with Big O classification, we can see that  is actually a class of functions, all of 

which grow at least as fast as  grows.  We can also see that there is a hierarchy of Omega 

classes, just as there is a hierarchy of Big O classes.  For example, suppose .

 This means "growth-rate of "  "growth-rate of ".  But since "growth-rate of "  

"growth rate of ", we can conclude that "growth rate of  "   "growth rate of ", 

which is equivalent to saying that .

In fact, if , then .    

(Note the parallel to Big O: if  , then )

When determining the Big O classification for  we try to find the smallest function  

such that .   Conversely, when determining the  classification for  we 

try to find the largest function  such that .

In class we did a couple of examples.  Here’s another:

Let  

We know that .  It’s also very easy to see that   ... we can let c = 

0.0001 and it is immediately clear that    .  

Now is it possible that    ?

If this were the case, then there would exist a positive constant  such that

i.e.   



but we can easily see that this is impossible:  even if  is very small, as  gets large there will 

come a point beyond which  is    so

,  which would give    ... which is 

not possible.  

Thus 

This example illustrates a useful fact: if  is a polynomial, then the Big O class and the  

class for  are identical.

But this is not always the case.  For example, consider this function:

A(n):
    if n % 2 == 0:
       for i = 1..n^2:
          print '*'
    else:
       for i = 1..n:
          print '*'

Let  be the time required to execute A(n).  If you plot  for n = 1, 2, 3, ... you will 

see that it has a zig-zag shape.  The tops of the zigs occur when  is even, and they grow at 

the same rate as .  It is easy to see that  .  However, the bottoms of the 

zags, which occur when   is odd, do not show this behaviour - they grow at the same rate as 

n.

Referring back to our previous definitions, we are now able to say that  and 

also   ... and neither of these can be improved: there is no lower O class for

, and no higher   class for .

This example demonstrates that an algorithm's Big O class may be different from its   class.



If it turns out that we can show an algorithm's complexity is in   and in  , 

then we get very excited - it means that  gives both an upper and a lower bound on the 

growth-rate of the time required by the algorithm.  Basically it means we know exactly how 

fast the algorithm's time requirement grows.  This is so amazingly wonderful that we give it a

special name: 

Theta Classification

If  and , we say .   


