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We have discussed the  notation as applied to bounding the growth-rate of the time 

required for an algorithm.  That’s a powerful tool, but the real strength of the  and  

notations lies in applying them to problems.

What would it mean to say that a problem P has a lower bound  on its complexity?  It 

would mean that we can prove that every possible algorithm that solves P is  

How can we do that?  We would have to prove the statement not only for all known 

algorithms that solve P, but also all algorithms that might be discovered in the future that 

solve this problem.

We can do this by making some simple assumptions about the computer architecture – 

basically that we are only considering sequential (non-parallel) machines, with constant-time 

arithmetic operations and a random-access memory.  This rules out possible breakthroughs 

such as effective quantum computing, hyperspace or time-travel.

Within these constraints, we can see immediately that any problem that requires reading  

input values must be in .  This is kind of trivial but it is often the best we can do.  It’s 

worth pointing out that sometimes we ignore the input phase of an algorithm – the best 

example is binary search, which we always describe as being in .  Obviously this is 

only true if we ignore the time required to input (and sort) the set of values.

Sometimes we can do better.  For example, suppose a certain problem requires multiplying all

pairs of values in a set of size .  There are about   such pairs so any sequential algorithm 

that computes the necessary products must be in  

Knowing the  classification of a problem can help us in our quest to find an optimal 

algorithm for the problem.  For example if we can show that a problem is in  and the 

best algorithm we have is in , then there may be a more efficient algorithm still waiting

to be discovered.  But if we find an  algorithm for this problem then we can say the

 is in  – all algorithms for this problem grow at least as fast as  grows, and 

we have found an algorithm that grows exactly that fast.

There is a famous and deeply studied problem that must be mentioned here: matrix 



multiplication.  Given two  x  matrices, we wish to compute their product.   Since we have 

to input   values this problem is clearly in  .   The naive matrix multiplication 

algorithm is in .  For decades people have been trying to establish the  classification 

on this problem by finding faster and faster algorithms.

Let's look at a simple example of determining the  classification of a problem.  The problem 

we will look at is evaluating a polynomial 

 
First, we can observe that any algorithm that solves this must at the very least read or 

otherwise receive the values of  and the  coefficients.  Thus we can easily see that every

algorithm for this problem must be in .

Consider the simple algorithm I will call BFI_Poly:

BFI_Poly(x,c[k] ... c[0]):
    value = c[0]
    for i = 1 .. k:
       power = 1
       for j = 1 .. i:
          power *= x
       value += c[i]*power
    return value

BFI_Poly() clearly runs in  time  (you should verify this if it is not already familiar)

So we have a problem with a lower  bound of , and an algorithm that is in   ... can 

we either increase the lower bound, or decrease the upper bound?



It turns out that for this problem we can decrease the upper bound by using a better 

algorithm - namely, Horner's rule:

Horners_Poly(x,c[k] ... c[0]):
    value = c[k]
    for i = k-1 .. 0:
       value = value*x + c[i]
    return value

You should be able to verify that Horners_Poly correctly evaluates  and that it runs in

 time.

(As a side-issue, can you find an easy way to modify BFI_Poly so that it also runs in   

time?)

Now we are in clover - the upper bound on our algorithm exactly matches the lower bound 

on the problem.  We can now say that the problem is in .  This really is very good news 

- it means we have found an algorithm for this problem that cannot be beat!

Well ... sort of.  

It means our algorithm has the lowest possible complexity.  There may be another algorithm 

with the same complexity and a lower value of c, the constant multiplier.  This is what we see 

when we compare mergesort and Quicksort: they have the same  complexity, 

but Quicksort is faster in general because it has a lower constant multiple.   (Yes, I know that 

Quicksort has worst-case   complexity the way it is normally implemented.  It is 

actually possible to modify Quicksort so that you can guarantee  performance 

but hardly anyone bothers because the pathological situations that give rise to the  

performance are very rare.)

******* 

The following information is really really interesting, but you can skip it now and read it later

if you want.  Look for another line like this one to find the point where you can skip to. 

The study of   classification has led to an incredibly important result in complexity theory 

with direct implications for algorithm and data structure design: comparison-based sorting 

of a set   where  is the size of the set.  In other words, there cannot be any 

sorting algorithm based on comparing elements of the set to each other that runs in less than

 time.  



A word about comparison-based sorting: most of the sorting algorithms we encounter are in this

category.  Bubble-sort for example, (which we all know we would never use in most 

circumstances because it runs in  time) is based on repeatedly comparing two 

consecutive values in the array, and swapping them if required.  Merge-sort boils down to a 

sequence of ever-larger merges, each of which consists of repeated comparisons between 

elements of the set.  Quick Sort uses comparisons between values to partition the set into 

“small values” and “large values”, then sorts the two subsets recursively.   Each of these can 

be expressed at the most abstract level as:

while (not sorted):

compare two elements of the set

based on the result of the comparison, do some stuff

So the question is: if we have a sorting algorithm that fits this pattern, can we put a lower 

bound on the number of comparisons we must do?  It turns out that we can!

We can visualize the execution of such an algorithm as a binary tree (note that this does not 

mean that the algorithm involves building a tree ... in this analysis the tree is a 

representational device for the execution of the algorithm).  The root of the tree represents 

the first comparison.  There are two possible outcomes, each leading to another comparison ...

and each of those leads to two more, etc., until the set is sorted.



This tree has to include every possible sequence of comparisons that the algorithm might use 

to complete the sorting operation.   Every possible initial permutation of the set of n values 

will follow a different sequence of comparisons to become sorted, so each leaf of this tree 

represents the termination of the algorithm for a different initial permutation.  Since a set of n 

values has n! permutations, the execution tree must have n! leaves. 

Now we are almost done.  We can use the number of levels of the tree to put a lower bound 

on the running time of the algorithm.  (For example, if the tree has 12 levels then there is some

leaf that is only reached after 11 comparisons.)  If we actually built this tree for bubble-sort we

would see that it has about  levels for some constant , and if we built the execution 

trees for merge-sort or Quicksort we would see that those trees have about  levels 

for some constant .

But can we say anything about the minimum height of a binary tree with n! leaves?  If we 

think about this for a moment, we can see that if a binary tree has X leaves at the bottom level,

then the level above this has  vertices, the one above that has   vertices, and so on up to 

the root.  In other words the number of levels is about  

So the execution tree for any possible comparison-based sorting algorithm must have about

 levels

Because of the way logs work, we get    

which we now know means that we can write  



And there it is!  The execution tree for any comparison-based sort algorithm must have at 

least  levels, for some constant c, and so every comparison-based sorting 

algorithm that can successfully sort all possible initial permutations is in .

End of sorting story?   Not quite (stories never end).  If we place restrictions on the initial 

permutation (so that not all  initial permutations are possible) then we may be able to get a 

lower complexity (the execution tree does not need as many leaves).  Also, there do exist 

sorting algorithms that are not comparison-based – under some circumstances these can run 

faster than  time.  But for general purpose, no-restrictions sorting, the result holds.

******* 

Ok, you can start reading again here.  But you skipped over some amazing stuff – in a 

previous year one student said this was their favourite thing they learned in CISC-235  – you 

should go back and read it sometime. 



linked list: we need to create a Node object, containing two fields:  

           value - the value being stored

           next - a pointer to another Node object

Now our Stack class might look like:

class Stack():
        
    def init():
        this.top = NULL
            

    def push(x):
        newNode = new Node()
        newNode.value = x
        newNode.next = this.top
        this.top = newNode
           
            
    def pop():
        if this.top == NULL:
            ERROR("Can't pop from empty stack")
        else:
            x = this.top.value
            this.top = this.top.next
            return x

    def isEmpty():
        return this.top == NULL

This involves more operations per push and pop than the array version, and so will be a bit 

slower in practice.  However it has the benefit that there is no upper limit on the size of the 

stack.

Now we can verify that with either of these implementations, all stack operations take   

time ... so the  classification of the problem is correct.

Stacks are widely used - most compilers and programming environments use a stack to 

handle nested function calls (sometimes called the "execution stack" or the "call stack").  

Adobe Postscript is heavily stack-based.  IBM, Apple and NASA use a language called Forth 

which is completely stack-based.  One of the appeals of the stack data structure is that it is 

very simple and can be implemented in limited memory space, yet it is very versatile.



Stack exercises:

1.  Write an algorithm that will move the top value on one stack to the top of another stack.

2.  Write an algorithm that starts with a stack containing n integers and finishes with the same

integers in the same stack, but with the value that was on the bottom of the stack moved to 

the top, and all other values moved down one position.  For example if the stack initially 

looks like this:

4         top

17

9

23

then it should finish like this:

23

4

17

9

You may use another temporary stack in your algorithm.

3.  Write an algorithm that takes as input the integers {1, 2, ... , n} in a randomly determined 

arrangement on two stacks, and a target arrangement of the same integers on the same two 

stacks.  Using only  the methods created in exercises 1and 2, rearrange the integers to match 

the target arrangement.

For example suppose 

n = 3, 

start arrangement is      on the first stack and    on the second stack,

target arrangement is    on the first stack and nothing on the second stack

One solution is 

- move the top of Stack 1 to Stack 2  (as in Exercise 1)

- move the bottom of Stack 2 to the top of Stack 2 (as in Exercise 2)

- move the top of Stack 2 to the top of Stack 1

- move the top of Stack 2 to the top of Stack 1



It’s not hard to create a generic algorithm that will transform any initial arrangement to any 

target arrangement ... but creating an algorithm that performs the transformation in the 

smallest number of steps is much more challenging.


