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The fourth traversal algorithm that is widely used is called Breadth-First Traversal - we will 

look at it in some detail later, but for now we can give an explanation of the idea:  explore the 

tree one level at a time – so first we visit the root, then its children, then their children, then 

theirs, and so on down to the bottom of the tree.

Applying this to our tree gives

- + * 4 * 2 8 3 10

This is not as useful in terms of evaluating the expression because it is difficult to match the 

operations up with the operands – but breadth-first traversal has many other applications.

Let's consider the complexity of In-Order, Pre-Order and Post-Order.  If we let n be the 

number of vertices in the binary tree, you can see that in each of the three algorithms each 

vertex gets visited exactly once.  Furthermore, the event that brings us to a vertex, (ie 

executing a recursive call in any one of the three algorithms), is exactly equivalent to 

following an edge of the tree.  Since we know there are n-1 edges in a tree (we proved this in 

CISC-203), the number of such operations is n-1.  Thus we see that no matter what the actual 

structure of the tree (i.e. whether it has many levels or few levels), these algorithms all take 

O(n) time.

In case you don't remember (or didn't like) the proof from CISC-203 that the tree has n-1 

edges, here is a different one:

Recall that in a rooted tree, every edge joins a parent to a child, and every vertex except the 

root has one edge that connects it to its parent.  Thus there are n-1 edges joining vertices to 

their parents, and there aren't any other edges ... so the number of edges is n-1.

Now we turn to the most popular application of binary trees ... one that is found throughout 

computing.



Binary Search Trees

aka

Lexically Ordered Binary Trees

Suppose we have a collection S of values and we want to perform the “search” operation.  It 

comes in two flavours:

Given x, is x in S?

Given x, what is the location of x in S?

As always in this course, our concern is choosing the best structure in which to store S to 

facilitate answering these questions.

Most often we are interested in the second question because we want to do something with  x,

such as access or modify information associated with x.  If we are really only interested in the 

first question, there are structures that are particularly suited to that ... as we will see later 

(dramatic foreshadowing).

First let’s try to establish the  classification of the search problem.  To do so we will be a bit 

specific about the types of algorithm we will consider: we will focus on comparison-based 

algorithms – ie algorithms that are based on comparing the target value x to elements of S.

Suppose we have a comparison-based search algorithm A that is guaranteed to find the 

correct answer for a target value x and a set S.   We can think of the steps this algorithm 

follows as:

compare x to some element of S

depending on the comparison result ...

compare x to some other element of S

depending on the comparison result ...

compare x to some other element of S

etc.

until we either find the value x or determine that it cannot be in S. 

We can illustrate the set of all possible “execution traces” of A with a so-called “execution 

tree”



In this tree we are showing three possible outcomes of each comparison.  In a standard if-

then-else language structure each comparison only has two outcomes, but we can simulate a 

three-outcome comparison with 2 two-outcome comparisons, so we can think of each circle in

the execution tree as containing 2 two-outcome comparisons.

Each execution of the algorithm (for a specific target value x and set S) will follow a branching

path down through this execution tree until it either finds x or determines that it is not there.  

Note that the only way to be absolutely sure that x is in S is to actually find an element of S 

that equals x.   Thus the execution tree must contain at least as many “comparison nodes” as 

there are elements of S - if there is some element of S that is never compared to x, then we 

cannot know for sure whether or not that element equals x.  (We can think of an evil 

adversary who knows our algorithm and knows we are searching for x – the adversary 

arranges things so that x is placed in an element of S that our algorithm doesn’t look at – so 

we never find x even though it is there.  And if you don’t like the idea of an evil adversary, 

just think of Murphy’s Law: if we use an algorithm that never looks at some particular 

element of the set, then Murphy’s Law says that sooner or later that’s the element that we 

should have looked at.)
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So we know the execution tree for our algorithm A must contain at least n comparison nodes. 

But each execution of A will only visit some of those nodes – each execution represents a path 

down through the execution tree from the root to the point where the answer to the question 

is known.  Our important question is “What is the longest sequence of comparisons A will 

ever need to complete a search?”  If we can determine this as a function of n, this will  tell us 

that for every value of n, there is some set of values that will require this many comparisons 

to get the right answer.  This gives us a lower bound on the complexity of A.  And since A is a 

completely unspecified comparison-based search algorithm, it will give us a lower bound on 

all comparison-based search algorithms.

Our question is equivalent to asking what the length of the longest path is from the root to the

bottom of the execution tree.  This will be different for each possible search algorithm A, but 

we can put a lower bound on it.  We know the execution tree for A contains at least n 

comparison nodes.  The top level of the tree has 1 node.  The next level has no more than 2 

nodes.  The level below that has no more than 4 nodes (we say “no more than” because some 

of the branches may be dead ends).   Thus if there are k levels, there are no more than

  nodes in the tree.

This gives      since we know the tree contains at least n nodes.

But the left hand side is exactly equal to  , so we get   

which gives      which gives   

So we conclude that the execution tree for every comparison-based search algorithm has at 

least  levels ... so no comparison-based search algorithm can have complexity less than

.  In other words, comparison-based searching is in   

So what?



We are already familiar with a structure that lets us search for x very efficiently – our old 

friend the lowly one-dimensional array.  If we store S in sorted order in an array, we can 

search S in   time, using binary (or even trinary) search.

So ... end of story?  We already know an algorithm whose complexity matches the   

classification of the problem.  There’s nothing left to be done, right?  Well, that’s not quite 

true.

If our set S is fixed and unchanging, a sorted array is perfectly fine.  But many situations that 

involve sets need to make changes to the sets – adding new values and deleting existing 

values.  If we need to add or delete values, then a sorted array is not a good choice at all: 

inserting or deleting values in a sorted array takes    time.  It’s not much good having a 

fast search algorithm if our set-update algorithms are much much slower.

For contrast, consider storing the set in a linked list.  Now the complexity of adding a new 

value is  , but searching and deleting items are both 

The question then becomes: is there a data structure that allows searching, adding and 

deleting to all be completed in   time?

The answer is yes, and of course since this discussion is lodged in the “Binary Tree” section of

the course you will have guessed that this is the structure.  But to facilitate the search 

operation we need to be more precise about how the values in S will be stored in a binary 

tree.

When we store information in a generic binary tree there is no rule that says the information 

must be stored according to a specific pattern or rule.  However, in order to use a binary tree 

to address the “search” problem we enforce a simple rule for the placement of the values in 

the tree: small values go to the left and large values go to the right.  We can formalize this as 

follows:

Binary Search Tree (BST):  a binary search tree is a binary tree in which each vertex contains 

an element of the data set.  The vertices are arranged to satisfy the following additional 

property: at each vertex, all values in the left subtree are  the value stored at the vertex, and 

all values stored in the right subtree are  >  the value stored in the vertex.  Note that we use     

" " for the left subtree to accommodate the possibility of having duplicate values in the tree.



But a BST is a more complex structure than either a one-dimensional array or a linked list.

In order to make a case for using a BST as our structure of choice for Search/Insert/Delete 

situations we need to determine the complexity of algorithms for the search, insert and delete

operations, and then argue that they are superior to the algorithms for the same operations on

an array or list.

BST_Search

Because of the ordering of the values in the vertices, searching a BST works just like binary 

search on a sorted array.  We start at the root - if it contains the value we want, we are done.  

If not, we go to the left child or right child as appropriate.

Our design goal for implementing this data structure (and all subsequent ones) is that the 

user - in this case, the program which is calling the search function - should not need to know 

any details about the implementation of the structure.  For example, the user should not need 

to know that the root of the tree is identified by an attribute called "root".  

In these notes I’m using a typical object-oriented language syntax in which instances of 

classes possess methods which are accessed by appending the method name to the instance 

name.  So if T is an instance of class Binary_Search_Tree, and all instances of this class own 

a method called Search,  then we can call that function on T  with    T.Search(x)    where x is 

the value to be searched.

We need to decide which flavour of search we are going to implement ("if x is there, return 

True" versus "if x is there, return its location").  We will opt for the latter since it is neither 

easier nor more difficult with the BST structure.  If x is in T, we return a pointer to the vertex 

containing it.  If x is not in T, we return a null pointer.



Here is a simple iterative version of the binary search tree algorithm as part of a 

Binary_Search_Tree class.  

Class Binary_Search_Tree():

#instance variable:

root : Binary_Tree_Vertex

def Search(x):
current = this.root # current is a Binary_Tree_Vertex 

# pointer
while current != nil:

if current.value == x:
return current

elif current.value > x:
current = current.left_child

else:
current = current.right_child

return nil    #  x is not in the set



If we don’t like multiple return points we can write the algorithm like this:

def Search(x):
current = this.root 
while (current != nil) && (current.value != x):

if current.value > x:
current = current.left_child

else:
current = current.right_child

return current    

We can also implement the search algorithm recursively.  We can use a "wrapper" function so 

that the interface does not change (the user should not need to know whether our algorithm 

is iterative or recursive).  In this version, Search(x) and rec_Search(x)  are both instance 

methods of the Binary_Search_Tree class.

def Search(x): # this method initiates the recursion
return rec_Search(this.root,x)

def rec_Search(current,x):
if current == nil:

return nil
elif current.value == x:

return current
elif current.value > x:

return rec_Search(current.left_child,x)
else:

return rec_Search(current.right_child,x)

You should convince yourself that these algorithms do indeed achieve the same result.  It is 

easy to see that they have the same complexity since they visit exactly the same sequence of 

vertices.

Which of the two is better?  To my eye the recursive version is marginally more elegant, but 

that’s debatable.   The iterative version is probably a bit more efficient - this is because 

(according to conventional wisdom) a function call typically takes longer to execute than an 

iteration of a loop.  This means that even though the two algorithms have the same 

complexity, the constant multiplier for the iterative version may be smaller than the constant 



multiplier for the recursive version.   

However: as I discovered by experimenting in Python with recursive versus iterative 

implementations of Quicksort, it seems that recursive implementations of some algorithms 

may be faster than iterative implementations of the same algorithms.  I encourage you to 

conduct some experiments to explore this question for yourself.  Don’t always trust 

conventional wisdom!

Another consideration is that it is often easier to prove correctness of recursive algorithms 

because we can use a simple inductive proofs.

Regardless of the difference in speed, I prefer the recursive version.  As we will see when we 

look at more sophisticated algorithms for BSTs, there are times when using recursion is much,

much cleaner than using iteration.  Thinking about trees as recursive objects is a valuable 

exercise.  Sometimes, even if the eventual goal is an iterative algorithm the best way to get 

there is to start by constructing a recursive algorithm, then convert the recursive calls into 

loops.

I noted above that the  two versions of the Search algorithm for Binary Search Trees have the 

same complexity … but what is it?  We’ll defer that question for a while, but at this point we 

can observe that on each iteration of the loop (or in each recursive call) we do a constant 

amount of work, and the number of iterations (recursive calls) is bounded above by the 

number of levels in the tree.

We can think of the Binary Search Tree Search algorithm – either the recursive or the iterative 

version – as a modification of one of the three traversal algorithms we explored earlier.  

Which one?

Let’s turn to the problem of inserting new values in the set.  When we insert a new value, we 

need to put it in a position where we will be able to find it when we search for it.  So we can 

start by comparing the new value to the root value.  If it is > than the root value, we need to 

put the new value in the right subtree … because that is where we will look for it.  Similarly, 

if it is   the root value, it needs to go into the left subtree.  And of course, capitalizing on the 

recursive structure of BSTs, we conduct exactly the same decision process at whichever of the 

two children we go to.

Wait a minute … this sounds suspiciously like the Search algorithm.  It is!   The main work in 

the Insert algorithm is finding the proper place to add the new value, and that is almost 



exactly the same as the Search.  The only difference is that we continue the search until we 

find an empty place (i.e. a “null” pointer)

This means that if we find the value already present in the tree we continue the search (since 

we are allowing duplicates in our set) - thus we will inevitably reach a point where we "fall 

off" the tree. The point at which we fall off the tree is the unique location for the new leaf 

containing the new value.

One iterative version of the algorithm looks something like this.  Note that we have to treat an

empty tree as a special case because the root value will be “null” so we cannot compare the 

new value to the root value.  Also the new vertex (containing the new value) becomes the 

root, whereas in all other cases it is attached as a child of an existing vertex.

def Insert(x):
if this.root == nil:

this.root = new Binary_Tree_Vertex(x)
else:

current = this.root
done = false # declaring a Boolean variable
while not done:

if current.value >= x: # x belongs on the left side
if current.left_child == nil:

# the new vertex needs to be the left child of current
current.left_child = new Binary_Tree_Vertex(x)
done = true

else: # keep going down the tree
current = current.left_child

else: # x belongs on the right side
if current.right_child == nil:

# the new vertex needs to be the right child of current
current.right_child = new Binary_Tree_Vertex(x)

    done = true
else: # keep going down the tree

current = current.right_child



Here’s what is happening in this algorithm.  As we work our way down the tree, we compare 

the new value x to the value in the current vertex and decide to go left or right.  But we can’t 

just jump down to the new level because if it happens to be a nil pointer then we have 

successfully found the insertion point, but by jumping down a level we have lost the link to 

the tree vertex which needs to become the parent of the new vertex.  So we “test the water” 

(so to speak) by checking to see if the appropriate child of current is a nil pointer.  If it is then 

we create the new vertex and attach it to current.  If the child is not a nil pointer then we 

move down to it in the normal way.

I wouldn't actually ever use this method since the recursive method is much cleaner.  Behold!

def Insert(x):
this.root = rec_Insert(this.root,x)

def rec_Insert(current,x):
if current == nil:

return new Binary_Tree_Vertex(x)
elif current.value >= x:

current.left_child = rec_insert(current.left_child,x)
else:

       current.right_child = rec_insert(current.right_child,x)
    return current

I remember feeling a sense of awe when I first saw this – it looks too simple to be correct (we 

were easily impressed in the Dark Ages).  It makes beautiful use of the recursive structure of 

the tree to eliminate the need to treat the root as a special case, and it does away with the 

nested ifs.  Furthermore it illustrates a very sound design principle for recursive algorithms 

that modify binary trees:

A method that potentially modifies a tree should return a pointer to the top of the 

modified tree, even if it didn’t change.

The value of this is that we can apply this principle at every vertex in the search path  (that is, 

it applies to subtrees as well as to the whole tree).  We call the recursive method on either the 

right or left child of the current vertex and simply attach the returned pointer to the modified 

subtree in place of whatever was there before.  

In our insertion algorithm, in almost all cases this will be the same connection as was already 

there, but in the one crucial situation where we have found the insertion point an existing nil 

pointer gets replaced by the pointer to the new Vertex.  Then we work our way back out of 

the recursion, re-attaching the vertices as we go.



See how this works at the root: we call the recursive method on the subtree that starts at the 

root (ie the whole tree) and whatever we get back as the top of the modified tree is made the 

root.  If the tree was empty, this will be a pointer to the new Vertex.  If the tree was not empty,

it will be a pointer to the previous (and unchanged) root Vertex.  Either way, it is correct.

Next we will look at more complex algorithms for modifying trees, in which the subtrees may

be very different after the changes have been made.  At that point the power of saying “I 

know the recursive call will return a pointer to the top of the fixed subtree, so I can just attach 

it and return” will become more apparent.


