
Proof that the Height of a RB Tree is in O(log n)

We have seen that the insert operation on a RB takes an amount of time proportional to the 

number of the levels of the tree (since the additional operations required to do any 

rebalancing require constant time at each level of the tree).

We have not yet shown that the number of levels in a RB tree is in O(log n).  We need to do 

this so that we can truthfully claim that search, insert (and by extension, delete) are O(log n) 

operations on RB trees.

We will show that the height of a RB tree on n vertices is approximately 2*log n.  In class I 

presented a simple structural proof of this claim:  

Let T be a RB tree.  Now compress T by absorbing each R vertex into its parent (ignoring the 

values).  This creates a tree (call it T’) which is no longer a binary tree and which is pretty 

useless for practical purposes, but which is incredibly useful for proving the desired result 

about the height of T.

Here are some things we know about T’:

    - all the leaves are at the same level (since the number of B vertices on every path down 

from the root of T to the leaves of T is the same, and we have just removed all the R vertices) 

and 

    - every internal vertex of T’ has 2, 3, or 4 children.    

Here is a small example of T and T’:

The RB tree .  As an 

exercise, see if you can come 

up with a sequences of 

insertions that would create 

exactly this RB tree.



The modified tree .  Each R vertex of  has been pulled up into its parent – this has the 

effect of raising some or all of the leaves to higher levels.  We’ve lost some values but that’s 

not important – we are not going to use this tree for anything except proving the desired 

property of the original RB tree.  So we don’t really care about the values at this point - all we 

care about is the structure of this tree.

Note that (as we claimed) all the leaves are now on the same level.  Also note that the number 

of leaves has not changed (since they are all Black, none of them get absorbed into their 

parents).

Now, how many leaves does a RB tree have, if it contains n values?  It may be a bit surprising 

to discover that a RB tree with n values always has exactly n+1 leaves.  We can see this is true 

by an informal inductive argument.   I will start with n = 1.  A RB tree containing 1 value will 

consist of a single internal vertex with 2 leaves below it.  There’s our base case.  Now consider

what happens when we add a new value: one of the leaves is replaced by a new internal 

vertex with two leaves  below it.  So the number of values in the tree goes up by 1, and the 

number of leaves also goes up by 1.  We will always have one more leaf than the number of 

values.

Let    be the number of leaves of  .

Since the "branch-in" factor at each internal vertex of  is at least 2 – that is, each internal 

vertex has at least two children, the number of vertices one level above the leaves is     , 

and the level above that has     vertices, etc. decreasing by a factor of at least 2 on each 



level until we reach the root.  Clearly the number of levels before we reach the root is no more

than  .  Thus in the original tree , each path from the root to the leaves has

 B vertices (since the B vertices of  are all in   as well).  If we recreate  from 

by restoring the R vertices to their original positions, the lengths of paths from the root of   

to its leaves can at most double, due to Rule 4.  Thus in    the longest path from the root to a 

leaf has length  .

Since m = n+1, we finally arrive at the conclusion that the longest path from the root of a RB 

tree to a leaf has length   , where n is the number of values in the tree.  

Thus the height of the tree is in  , and each of our search, insert and delete 

operations can be performed in  time.

Now, finally, we can conclude that for search, insert and delete operations, RB trees are better

than sorted arrays.

The text gives a more mathematical proof of this result that I encourage you to read.  I'll 

summarize it here.  You are not required to know this proof, but it is an excellent example of a

formal inductive argument about a data structure.

Let  be any vertex of a RB tree .  Define   to be the number of Black vertices below x 

on any path from  to a leaf (by virtue of the properties of RB trees,  is well defined and

is independent of the specific path chosen).  Define  to be the subtree rooted at .

Define  to be the number of internal vertices in .

Claim:  Let  be a vertex in a RB tree.  Then 

Proof By Induction:

Base Case:  Suppose    This means  is a leaf. 

 .  

 has no internal vertices, so .  Thus the base case holds.

Inductive Hypothesis:  Suppose for some    

(i.e. assume the claim is true for all   values  )

Let  be a vertex with  .  This means  is an internal vertex, and thus   has 



two children - call them  and .  There are two cases, based on the colour of  .

Case 1:   is Red.  In this case,  and  must both be Black, and it is clear that

Case 2:    is Black.  In this case, each of   and  could be either Red or Black.  If either of 

them is Black, it has  .  If either of them is red, it must have two children with

.

In both Case 1 and Case 2,  has (at least) two descendants with  .  By the Inductive 

Hypothesis stated above, the subtrees rooted at those descendants each have   

internal vertices.

Thus  ... the "+ 1" is there because   is an internal vertex of  

Thus  

Thus  

(End of proof)

Now let   be a RB tree with   internal vertices and height  , and let  be the root of .  

From the theorem we just proved, we get

so

and

, which we simply turn around to write as   

But clearly  , since the only difference between   and   is the number of 

Red vertices on the paths from r to the leaves, and Red vertices can form no more than 1/2 of 

any path.

Combining these inequalities we get  



Thus the height of a RB tree with n internal vertices (ie a tree that stores n values) is 

All in all, I prefer the "push the red vertices up into their parent vertices" proof – I think it is 

far more intuitive.


