
Hashing Part 1 – continued

Several students had questions after class and during office hours, and I thought it would be

useful to share some of the answers.

Q1: Can you explain why quadratic probing goes bad when m = 12?

Yes, but this will be a long answer. The TLDR summary is “12 has lots of factors and this

creates repetition in the quadratic probing sequence” . If you’re ok with just knowing that

and not worrying about why, skip to the next question.

Here is a more thorough explanation of why 12 (or any number with lots of factors) is a bad

choice for a table size when we are using quadratic probing. To keep the arithmetic simple

for now, we will continue to use . And the end of this answer I will discuss

using other values for and So the critical step in the insert algorithm is where we

calculate the next address to check with and with

 and this simplifies to

Consider the probing sequence when v = 3 (remember that v = h’(k)) . I’m just using v = 3

as an example … the argument would be the same no matter what v is.

0 0 3

1 2 5

2 6 9

3 12 3

4 20 11

5 30 9

6 42 9

7 56 11

8 72 3

9 90 9

10 110 5

11 132 3

We can see that the addresses we check are repeating, which means we are wasting time

checking locations we have already examined … and it looks like there are some addresses

we never check. Why??? That’s going to take us on a bit of a journey back to CISC-203.

Consider the calculation of the next address to be examined.

If we define

then we can write

and that’s useful because it makes it very clear that if for some and some we find that

 then the address values for iteration and iteration will be the same.

Since we are now focusing on , let’s tabulate that:

0 0*1 = 0 0

1 1*2 = 2 2

2 2*3 = 6 6

3 3*4 = 12 0

4 4*5 = 20 8

5 5*6 = 30 6

6 6*7 = 42 6

7 7*8 = 56 8

8 8*9 = 72 0

9 9*10 = 90 6

10 10*11 = 110 2

11 11*12 = 132 0

 Ok so we can see the values are repeating (and we can see that the value of v really only

determines the starting point of the probing sequence, not the pattern).

Consider the calculation for i = 5 :

The value of is the remainder when is divided by .

In other words, , where with

This actually gives us a lot of information about :

So

This tells us that must be a multiple of ! But we also know …. so the only

two possible values for are or …. so or

And look! Both 0 and 6 have already appeared in the sequence of values (and

) … so must take us back to an address we have already visited!

We got this restriction on by noticing that is a multiple of and also is a

multiple of . Now we can do the same analysis for because is a multiple of ,

for because is a multiple of , for because is a multiple of , for

 because is a multiple of , for because is a multiple of , for

because is a multiple of , and for because is a multiple of . So

 … that’s a lot of repetition.

Let’s consider an even worse value for m: what if ? 60 divides by 2, 3, 4, 5, 6, 10, 12,

15, 20 and 30…. so any time divides by any of these factors, that will put

restrictions on and that will cause repetition in the probe sequence.

The more factors m has, the more repetition there will be in the probe sequence … which

strongly supports the idea that we should choose m to have as few factors as possible. In

other words we should choose a prime number for m.

Now what if we keep but choose other values for and ? Let’s consider

and

We get

Now we can define and we get

 , just as before – but now using the new definition of .

We can see that if the values of turn out to be multiples of 6, we will have the same

repetitive behaviour as before:

Multiple of 6?

0 0*0 Yes

1 1*5 No

2 2*8 No

3 3*11 No

4 4*14 No

5 5*17 No

6 6*20 Yes

7 7*23 No

8 8*26 No

9 9*29 No

10 10*32 No

11 11*35 No

Well that looks a lot better! But it’s not as good as it looks: for every even value of ,

 is a multiple of … and that means that the values for these even values

must all be in . We’ve removed one pattern but created another.

You can experiment with other values of and . It’s hard to find a good combination.

Bottom line: choosing makes it hard to get quadratic probing to work nicely … and

the same is true whenever has lots of factors. As stated above, quadratic probing is at its

best when m is a prime number.

Q2: Why do you say that using is a bad hashing function?

One of the goals when choosing a hashing function is to make use of all the information in the

key. Using can sometimes fail to do this. A simple example is when m is 10 (I

know I have argued elsewhere that we should choose a prime number for m … but for this

moment I am going to ignore my own advice.)

If m is 10, then we are effectively throwing away all digits of k except the last one.

Similarly, if m = 20, 25, 50 or 100 then the only digits of k that contribute to are the

last two (, etc)

Those observations are trivial but it is possible to go further. If you slogged through the

answer to the previous question, you saw an argument that can be adapted to show that there

can be an issue when k and m have common factors – this can lead to some addresses in T

being more “popular” than others … ie they can be the target of more than their share of keys

… which leads to more collisions.

In the real world keys often have patterns and similarities. For example if the keys are

student numbers from a particular class, most of the students in the class will be in the same

year so the first few digits of their numbers will be very similar. Sometimes using as

our hashing function can translate those similarities into collisions in the table.

Q3: What about defining h(k) = “sum of digits of k” % m? (So with ,

)

That uses all the information in the key, so is it a good hash function?

It looks like it might be, but it hides a subtle flaw! Here’s an example:

Suppose we need to store 2000 key values, and each key value is a 5-digit integer. We will

clearly need a table T with at least 2000 addresses … the exact size of the table does not

concern us right now.

Think about the keys: the smallest is 00000 and the largest is 99999. That means that the

“sum of digits of k” operation can only give values from 0+0+0+0+0 = 0 up to 9+9+9+9+9 = 45.

That means that every one of the 2000 keys will get hashed onto the addresses from 0 up to

45 … that’s an average of more than 40 keys per address! The number of collisions will be

huge, and the probe sequences to resolve the collisions will be extremely long. Disaster!

Q4: What be a good hash function for the scenario in the example just above?

This is a topic we will discuss in class. There are some very effective hash functions available.

Here’s a really simple one:

compute

throw away the last couple of digits of and the first couple of digits of

this leaves a number with about digits … call it

compute

As you might guess, this is called the “mid-square method”. I’m not expecting you to know

this for Friday’s test.

