
Double Hashing

Double hashing attempts to combine the best thing about of linear probing (each probing 

sequence contains all addresses) with the strong point of quadratic probing (reduced primary

clustering).  The technique is simple: we include a second hash function h"(k), and define 

                                                                            

Double hashing is effectively a generalization of linear probing, except that instead of having 

a fixed "step size" that determines how far we jump forward in the hash table on each 

iteration (in linear probing, the step size is 1), we use the key itself to determine the step size.  

Since the key is used in two different hash functions to determine the initial address in the 

probing sequence and the step size, the probability that two keys will have exactly the same 

probing sequence is greatly reduced.  This reduces both primary and secondary clustering.

Example:

Let m = 10,  let  = "sum of the digits of k", and let    = 

Consider the probing sequence for   = 13

i h(13,i)

0 4

1 3

2 2

3 1

... ...

Now consider the probing sequence for  = 22

i h(22,i)

0 4

1 8

2 2

3 6

... ...



Here we see that even though the probing sequences for   and  start in the same address 

(4) they are completely dissimilar after that.

Note that we now have potentially  different probing sequences, as opposed to the  

probing sequences we get with quadratic probing.  It is easy to see that the use of   

reduces primary clustering (unless  for all , which would be quite pointless).

 But what about the problem of missing empty addresses?  We can see that in the example 

above, the probing sequence for  will only try the even-numbered addresses in T.  

There is an even worse possibility: if  for some  then the probing sequence for 

that key will never move from the initial location given by  .

However, if we can ensure that  and  are relatively prime for all , each probing 

sequence will include all addresses (this is easy to prove based on material we studied in 

CISC-203) ... and this is quite easy to achieve:  for example if   is a power of 2, and  is

odd for all , then we satisfy the requirement.

Making sure  is odd is also easy:

h’’(k):

        x = "some computation based on k, such as , or   where
                 and  are primes, etc."
        if x % 2 == 1:
                return x
        else if x == m-1:   # this test ensures that we never return m

    return x-1
  else:

                return x+1

There are of course infinitely many other ways to ensure that  and  are always 

relatively prime.

Double hashing is considered to be one of the most effective collision resolution methods in 

use.

Many discussions of hashing suggest that the table size  should always be prime because 

that reduces some of the potential for clustering when we do the “mod m” step of the 

hashing.  However, as we have just seen, there are sometimes very good reasons for letting

 for some integer .   Here is another good reason: if we can perform bit-level 



operations on integers (which is easy in the “C” family of languages, as well as others), then 

computing   (where  is some integer) is trivial: we simply throw away all but the 

last  bits of  .  This can accelerate the real time efficiency of our hashing function.


