
Choosing a Good Hashing Function

In several of our examples we used the hashing function  .  This is a 

popular choice in a lot of introductory discussions of hashing, partly because it is easy to 

understand and implement.  Unfortunately it is not necessarily a particularly good hashing 

function.

But in order to justify that statement I need to offer some criteria by which we can judge the 

quality of a hashing function.  Alas, there is no universally agreed-upon list of such criteria.  

Hashing functions are used in a wide variety of applications and properties that might be 

essential in one application are undesirable in others.

I’m going to a mention a few properties of good hashing functions that seem to be generally 

accepted by most of the sources I have found.  For simplicity I am assuming that the keys are 

integers – we will discuss using Strings as keys a bit later.

A good hashing function should …

• incorporate all the information in the key, giving equal significance to all digits (unless 

some digits of the key have restricted ranges)

• map the keys uniformly to the addresses [0..m-1]  - that is, approximately equal 

numbers of keys should map to each address in the table

• be fairly fast to compute – the whole purpose of using a hash table is to have quick 

access to the data.  If computing the hashing function for each key takes a long time 

then we may lose this advantage 

• be discontinuous – keys that are “very close” should not always map to addresses that 

are “very close”.  The idea here is that if there happens to be a cluster among the keys –

for example, a group of keys that only differ in their last digit – this should not create a

cluster in the table T.  This property is definitely not universally considered desirable – 

some authors go so far as to recommend the opposite: they suggest that similar keys 

should always map to similar addresses.  It is not clear to me what the supposed 

advantage of this might be.



So let’s consider      in the light of these criteria.

Suppose we are working with decimal arithmetic and  .   Then it is clear that we fail 

the first criterion because we are simply discarding all but the last digit of each key.  Similarly

if  then we are discarding all but the last x bits of the binary representation of k.  This

is not very good (although we looked at some computational benefits when we discussed 

double hashing).

On the other hand, suppose we let .  If our keys are integers, we can represent an 

arbitrary key as   where the ’s are the digits of k.

So 

which is equivalent to saying 

which means that

 

(Why!?  Because if we multiply out    each term contains some power of 11 except

for the last one ( which is just   ) so when we apply the   all the terms except 

the last one just disappear.)

And since all powers of -1 are either -1 or 1, this simply resolves to an expression in which 

each digit of k is either added or subtracted … so every digit of the key plays an equal role in 

determining the final value.

This is kind of cool – just by changing m from 10 to 11 we can improve the performance of 

this hashing function.  But it’s still not very good … it fails the discontinuity test.  Consecutive

key values will map onto consecutive table addresses.   It does well on the other two criteria –

if the keys are uniformly distributed in the key space, they will be uniformly distributed 

across the addresses in T (assuming m = |T| ) … and computing   can be done in

 time.



For interest, you might wonder if we can pull the same trick and show that   will 

be kind of ok for any   by writing

as

where 

This will give

 

which looks good – each digit of k is playing a role in the hash value.   But there’s still a 

problem.  An example will show what it is.

Suppose    … so   .  The equation above becomes

But what happens if   or   or   for some   ?   Then   is a multiple of 15, 

so it disappears when we apply the   operation.  The result is that a ,  or  digit in

 cannot contribute anything to the hash value of  .  This is clearly not good – and it’s not 

immediately obvious how we could have recognized this problem with  without 

going through the analysis.

As an exercise, work out the details of this problem when 

So while there are values of  (such as 11) where each decimal digit of the key contributes to 

the hash value, there are also many values of  where this doesn’t happen.   It’s worth noting

that if   and  is prime this is not an issue because none of the expanded terms can 

be multiples of  – meaning they won’t disappear when we apply  .   This just 

reinforces our earlier observation that letting  be prime is often a good idea … not just for 

the purposes of collision resolution, but also (as we now see) for the design of hashing 

functions. 



Let’s look at another very popular (and very simple) hashing function:

         = ( sum of the digits of  ) 

This passes the first test (all digits contribute equally) and the third test (fast computation).

To see that this fails the second test, suppose the keys are 10-digit telephone numbers.  There 

are  possible keys (with a tiny fraction of them, such as 000-000-0000, ruled out because 

nobody gets that phone number).  The maximum possible value of    in this example is 

90 (the sum of 10 digits) so every probing sequence will start with an address in the range       

[0 .. 90].    If we are storing even just a few hundred keys, very soon every single insertion will

start with one or more collisions even if the table is otherwise almost empty.  This is not good!

This hashing function also fails the fourth criterion – keys that differ by 1 in any position will 

hash to consecutive addresses.

Fortunately the clustering problem with the “sum the digits” method is relatively easy to fix.  

All we need to do is introduce a multiplier that will increase the range of the hash values of 

the keys.  Ideally we want to do this in such a way that all  addresses in T are equally likely 

to be the starting point of a probe sequence.  That’s hard, but at least we can ensure that the 

range of hash values goes as high as .  Let  be the number of digits in the keys, and let   

be any constant such that .  In our previous example, .   Suppose

.   We can let , since .   A more formal explanation of how to 

choose  is given by the following equivalent statements

      

Once we have chosen    our hash function becomes

    h(k):
        sum = 0
        for each digit x of k:
            sum = sum*c + x
        return sum % m // treating m as a global variable!



Note that this is really just Horner’s Rule applied to the polynomial

where the   values are the digits of the key.   

This will give hash values that cover the full range from 0 to m-1 ... but it still may not be ideal

in that the hash values may not be completely evenly distributed.  For example, if the 

maximum sum value is only slightly larger than , the first part of the table will be "hit" 

more often.  Similarly, if the maximum result is quite a bit less than  then the last part of the

table will not be “hit” at all.  In an ideal world, the sum values would be evenly distributed.  

The selection of an optimal value for  is outside the scope of this course but I recommend 

studying it if you are interested.  For our purposes, it is worth noting that many people 

choose a prime for  when using this hash method, on the grounds that a prime value of  is 

less likely to lead to clustering among the keys.  Other people make   a power of 2   (for 

example, 128 seems to be popular).  One reason for this choice is that if we can perform bit 

level operations on integers, multiplying by a power of 2 is just a left-shift.



Here’s another hashing function that is sometimes proposed:

This violates at least two of the criteria.  First, consider the last digit of the key.  We can make 

a table of the full relationship between the last digit of  and the last digit of  

Last digit of Last digit of 

0 0

1 1

2 4

3 9

4 6

5 5

6 6

7 9

8 4

9 1

It’s pretty obvious that even if the keys have uniformly distributed final digits, the final digits 

of the squares will not be uniformly distributed (for example, the last digit of the square of 

the key will never be 3 or 7 or 8).

Now suppose our keys are 5 digit numbers.  Consider the square of 12345:

12345
   x 12345
__________

61725
    49380
   37035
  24690
 12345
__________

           152399025  

When we look at this result, we can see that its last digit is completely determined by the last 

digit of the key, and the first digit is determined by the first digit of the key (with the 

possibility of a carry from the second column).  Similarly the second-last digit is determined 

only by the last two digits of the key, and the second digit is determined mostly by the first 

two digits of the key (again, with the possibility of a carry from the previous column).



So the digits of the key do not all contribute equally to the hash value.  Fixing this problem 

leads to a very well-known hashing function called the mid-square method.  As you might 

guess from the name, this involves squaring k and taking only the middle digits of the square 

(where "middle" needs to be carefully defined).  

If we want to give equal weight to all digits of the key, it makes sense to throw away the first 

digits and the last digits of the square since these are based on just a few digits of the key.  

But here we have to compromise.  Based on the argument just given, the only digit of the 

square that is based on all 5 digits of the key is the middle one where we see 

6
9
0
9
5

But if we throw away all the other digits of the square except the one at the foot of this 

column, we end up with a one digit hash value (in this case, 9).   Since we started with  

possible keys, a hashing function that only produces 10 possible hash values is not very 

useful.

So we include some of the digits on either side of this central digit.  It’s a trade-off: the more 

digits we include, the greater the range of values we get … but also the more bias we create 

by giving greater importance to the beginning and ending digits of the key.  Here we can use 

information about the expected size of our data set to guide our decision.  For example, if we 

know that    will be under 1000, then we can pull 3 digits out of the middle of  … this 

gives hash values in the range [0 … 999] and it involves all digits of the key more or less 

equally.

 

The hashing function for this example would look something like this:

mid_square(k):
    s = k*k            # s will have up to 10 digits
                       # (note that if k is very small, most digits 

                  # of s will be 0)
                            
    x = s / 1000       # this gets rid of the last three digits
    a = x % 1000       # this keeps just the three digits we want
    return a

Once again we can see that if we do all operations at the bit level, extracting the middle bits of

the square can be done very quickly using shifts etc.



We need to return to the point raised in the algorithm, regarding what happens when k is 

small.  If the keys are 5-digit integers drawn uniformly from the range [0 ... 99999]  then some 

of them will be so small that when we apply the mid-square method we end up with 0.  For 

example, if k = 12 (ie. 00012) then s = 0000000144 and the mid-square method gives a = 0 ... as 

it will for any other very small value of k.  This is not much of a problem, but it illustrates that

when the key is very small, all (or almost all) of its information is lost when we discard the 

right-hand digits of the square.

Thus the mid-square method is most useful when we can be sure that few of the keys are very

small.

The mid-square method (with suitable precautions regarding small key values) satisfies the 

four criteria pretty well.



A very popular hashing method is called the multiplication method.  The basic idea is to 

multiply each key by a fixed value , throw away the “high end” of that, then multiply the 

result by m and throw away the “low end” of that – which makes it a bit like the mid-square 

method.  There are different forms of the multiplication method. Here we will use a 

multiplier that is between 0 and 1 – this makes it very easy to discard the parts of the numbers

that we don’t want to keep:

        # choose a value V in the range (0...1)
   # the same V is used for hashing all keys

        
        h(k):
            x = fractional part of V*k
            return floor(m*x)

For example, let , let    and let  

, of which the fractional part is 

So  

Note that we don’t have to add a      operation to the end of this calculation.  Since

,    must be in the range  

The choice of V is obviously important.  Choosing V = 0.5 would be very bad since x would 

always be either 0 or 0.5.  Donald Knuth, who writes with a great deal of authority and is 

usually right about such things, says that a very good value for V is   

This works out to approximately 0.61803398875 .   Interestingly, the Golden Ratio is 

1.61803398875… In other words, Knuth’s magic hashing number is the fractional part of the 

Golden Ratio  … and it is also exactly equal to the inverse of the Golden Ratio.  Math is cool.

Once again it is worth pointing out that if  is a power of 2 then computing  is just a 

left-shift, which can be done very quickly at the hardware level. 

The multiplication method is hugely popular.



The last hashing function we will look at is called tabulation hashing.  Its earliest form was 

invented by Albert Zobrist in 1969.  Zobrist used it as a method to keep track of chess-game 

positions.

Tabulation hashing is usually described in terms of bit-wise operations.  For simplicity we 

will assume that all our keys are exactly  bits in length, and that   for some integers

 and   – we will talk about how to choose   and  a bit further along .    We think of each key

as consisting of   blocks, each block consisting of   bits.

For example, we can think of 40-bit keys as consisting of 5 blocks of 8 bits.

Let m be a power of 2 … that is, let   .  Thus we want to map keys in the range 

  to addresses in the range  

We create a table (array)  Z with  rows and  columns, and we populate each cell of the 

table with a randomly chosen integer in the range   (that is, a randomly chosen 

bitstring of length ).   The table is created once and then used for all calculations of .

The hashing function is now defined by

tabulation(k):
# treat k as a string of b bits

    h = bitstring consisting of p 0’s   # or p 1’s
#   that is, h = 000000...0   or h = 111111...1
for (i = 0; i < r; i++)

x = k[i*t .. (i+1)*t-1]  
# x is the next block of t bits in k
row = (int) x
#row is an integer in the range [0..2^t - 1]
temp = Z[row][i] # pick one of the bitstrings in 

  # column i of the array
h = h XOR temp   # we exclusive-or h and temp, giving

  # an updated value for h
     return (int) h   # interpret h as an integer in the range

  # [0..2^p - 1]
                            

The basic idea is that we use each block of t bits to choose a particular bitstring from one of 

the columns of Z, then we exclusive-or all the chosen bitstrings together to get the final hash 

value.



An example may help:  Let  , and choose   and  .  Also, let  .  The 

array Z will have  rows and  columns.  Each cell will be occupied by a randomly-

chosen bitstring of length  .

Row Block 0 Block 1 Block 2 Block 3 Block 4

0 Table is filled With Random Bitstrings Of length 10

1

2

...

109 1011101001

...

167 0111001111

...

255

Suppose k = 01101101 10100111 11001100 01010110 11100011

h is initialized to 0000000000

The first block is 01101101, which is the integer 109.  Suppose Z[109][0] = 1011101011

We XOR this with h, giving 1011101011 as the new value of h

The second block is 10100111, which is the integer 167.  Suppose Z[167][1] = 0111001111

We XOR this with h, giving 1100100100 as the new value of h

We continue, using the third block to choose a bitstring from column [2] of Z, and then

using the fourth block to choose a bitstring from column [3], and

the last block to choose a bitstring from column [4]

Suppose the final value of h is 0111101101, which is the integer 493

Thus h(01101101 10100111 11001100 01010110 11100011) = 493



This is a very good hashing function, according to our criteria – assuming the random 

bitstrings in the table are uniformly distributed, each bit of the key has equal weight and the 

hash values cover the entire address space uniformly.  The computation is fast – just type 

conversions, table look-up and XOR.  Finally, changing any bit of the key will potentially 

change every bit of the result – it is highly discontinuous.

The choice of  and  determine the size of the table Z  (it has  rows and  columns).   

Clearly there can be options: if , we could use a table with  column and  rows, 2 

columns and  rows,  columns and  rows, etc all the way up to  columns and  rows.  

It seems that  is a popular choice in the literature since then each block is exactly one 

byte.  If   is a prime or some other awkward number we may need to pad each key with 

some extra bits at the end to bring it up to a length that is easy to break into blocks.

You may be wondering why we populate the Z table with randomly chosen bitstrings … why

not work out an optimal set of bitstrings to maximize the quality of the hashing function?  

One answer is that the expected performance of randomly chosen bitstrings can be shown to 

be very good.  Since hashing is about good expected performance, this is all we need.

Going Forward

There are hundreds (if not thousands) of other hashing functions in the literature and on the 

web – some simple and some complex – and more are created every year.  Hashing functions 

and other related functions have become essential tools in such diverse fields as 

cryptography, document verification and pattern matching.  I encourage you to explore these 

topics.



Hashing Functions for Strings

A very frequently encountered situation is where the keys are strings of characters (personal 

names, for example, or significant words in a document).

Our approach will be to look at algorithms that convert strings to integers.  Once we have 

done that we can apply any of the hashing functions we have already seen (or any of the 

limitless set of hashing functions that we did not look at).

All of these algorithms work on the individual characters of the string to be hashed.

In some languages characters and integers are not distinguished.  This means we can simply 

do arithmetic directly on the characters.  In other languages we use a function that is typically

called ord() to find an unique integer associated with each character.  You may want to read 

about the history of the ASCII sequence, the UNICODE sequence, and the ancient EBCDIC 

sequence.

Kernighan and Ritchie offer the following simple algorithm

h(s): # s is a string
a = 0
for x in s:

a += ord(x)
return a

It’s simple … and terrible.  It has all the flaws of the “sum the digits” hashing function for 

integers that we looked at earlier.

However, we can easily fix it the same way as we fixed that one: by introducing a constant 

multiplier  and using this algorithm

h(s): # s is a string
a = 0
for x in s:

a = a*c + ord(x)
return a



A popular and widely cited version of this is credited to Dan Bernstein.  It is reported to give 

excellent results

djb2(s): # s is a string
a = 5381
for x in s:

a = a*33 + x
return a

The reasons for starting  at 5381 instead of 0, and for choosing 33 as the value of     are 

complex – you can read about this here: 

http://stackoverflow.com/questions/1579721/why-are-5381-and-33-so-important-in-the-djb2-

algorithm

but there is one simple thing we can note about 33.  Since 33 = 32 +1, we can rewrite

a = a*33 + x

as

a = a*32 + a + x

and as we have observed so many times, multiplying by a power of 2  (in this case we are 

using ) is just a left shift of the bits.  So we don’t actually have to do any 

multiplication.

A sophisticated consideration when hashing strings that are English words of a fixed length 

(such as you are asked to do in Assignment 4) is that the letters of the alphabet are not 

distributed equally in common words, and not distributed equally in certain positions in the 

words.  For example the letter “e” shows up far more frequently than the letter “z” - a 

hashing function might be designed to downplay the significance of “e” and increase the 

significance of “z” in a word.   Similarly the distribution of letters that occur as the first letter 

of words is extremely non-uniform: comparatively few words start with “j”, and hardly any 

start with “x”, whereas there are many thousands of words that start with “t”.   A function 

that converts words into (hopefully unique) integers might emphasize positions, letters (and 

even combinations of letters) that distinguish words from each other.

http://stackoverflow.com/questions/1579721/why-are-5381-and-33-so-important-in-the-djb2-algorithm
http://stackoverflow.com/questions/1579721/why-are-5381-and-33-so-important-in-the-djb2-algorithm

