
Choosing a Good Hashing Function

In several of our examples we used the hashing function . This is a

popular choice in a lot of introductory discussions of hashing, partly because it is easy to

understand and implement. Unfortunately it is not necessarily a particularly good hashing

function.

But in order to justify that statement I need to offer some criteria by which we can judge the

quality of a hashing function. Alas, there is no universally agreed-upon list of such criteria.

Hashing functions are used in a wide variety of applications and properties that might be

essential in one application are undesirable in others.

I’m going to a mention a few properties of good hashing functions that seem to be generally

accepted by most of the sources I have found. For simplicity I am assuming that the keys are

integers – we will discuss using Strings as keys a bit later.

A good hashing function should …

• incorporate all the information in the key, giving equal significance to all digits (unless

some digits of the key have restricted ranges)

• map the keys uniformly to the addresses [0..m-1] - that is, approximately equal

numbers of keys should map to each address in the table

• be fairly fast to compute – the whole purpose of using a hash table is to have quick

access to the data. If computing the hashing function for each key takes a long time

then we may lose this advantage

• be discontinuous – keys that are “very close” should not always map to addresses that

are “very close”. The idea here is that if there happens to be a cluster among the keys –

for example, a group of keys that only differ in their last digit – this should not create a

cluster in the table T. This property is definitely not universally considered desirable –

some authors go so far as to recommend the opposite: they suggest that similar keys

should always map to similar addresses. It is not clear to me what the supposed

advantage of this might be.

So let’s consider in the light of these criteria.

Suppose we are working with decimal arithmetic and . Then it is clear that we fail

the first criterion because we are simply discarding all but the last digit of each key. Similarly

if then we are discarding all but the last x bits of the binary representation of k. This

is not very good (although we looked at some computational benefits when we discussed

double hashing).

On the other hand, suppose we let . If our keys are integers, we can represent an

arbitrary key as where the ’s are the digits of k.

So

which is equivalent to saying

which means that

(Why!? Because if we multiply out each term contains some power of 11 except

for the last one (which is just) so when we apply the all the terms except

the last one just disappear.)

And since all powers of -1 are either -1 or 1, this simply resolves to an expression in which

each digit of k is either added or subtracted … so every digit of the key plays an equal role in

determining the final value.

This is kind of cool – just by changing m from 10 to 11 we can improve the performance of

this hashing function. But it’s still not very good … it fails the discontinuity test. Consecutive

key values will map onto consecutive table addresses. It does well on the other two criteria –

if the keys are uniformly distributed in the key space, they will be uniformly distributed

across the addresses in T (assuming m = |T|) … and computing can be done in

 time.

For interest, you might wonder if we can pull the same trick and show that will

be kind of ok for any by writing

as

where

This will give

which looks good – each digit of k is playing a role in the hash value. But there’s still a

problem. An example will show what it is.

Suppose … so . The equation above becomes

But what happens if or or for some ? Then is a multiple of 15,

so it disappears when we apply the operation. The result is that a , or digit in

 cannot contribute anything to the hash value of . This is clearly not good – and it’s not

immediately obvious how we could have recognized this problem with without

going through the analysis.

As an exercise, work out the details of this problem when

So while there are values of (such as 11) where each decimal digit of the key contributes to

the hash value, there are also many values of where this doesn’t happen. It’s worth noting

that if and is prime this is not an issue because none of the expanded terms can

be multiples of – meaning they won’t disappear when we apply . This just

reinforces our earlier observation that letting be prime is often a good idea … not just for

the purposes of collision resolution, but also (as we now see) for the design of hashing

functions.

Let’s look at another very popular (and very simple) hashing function:

 = (sum of the digits of)

This passes the first test (all digits contribute equally) and the third test (fast computation).

To see that this fails the second test, suppose the keys are 10-digit telephone numbers. There

are possible keys (with a tiny fraction of them, such as 000-000-0000, ruled out because

nobody gets that phone number). The maximum possible value of in this example is

90 (the sum of 10 digits) so every probing sequence will start with an address in the range

[0 .. 90]. If we are storing even just a few hundred keys, very soon every single insertion will

start with one or more collisions even if the table is otherwise almost empty. This is not good!

This hashing function also fails the fourth criterion – keys that differ by 1 in any position will

hash to consecutive addresses.

Fortunately the clustering problem with the “sum the digits” method is relatively easy to fix.

All we need to do is introduce a multiplier that will increase the range of the hash values of

the keys. Ideally we want to do this in such a way that all addresses in T are equally likely

to be the starting point of a probe sequence. That’s hard, but at least we can ensure that the

range of hash values goes as high as . Let be the number of digits in the keys, and let

be any constant such that . In our previous example, . Suppose

. We can let , since . A more formal explanation of how to

choose is given by the following equivalent statements

Once we have chosen our hash function becomes

 h(k):
 sum = 0
 for each digit x of k:
 sum = sum*c + x
 return sum % m // treating m as a global variable!

Note that this is really just Horner’s Rule applied to the polynomial

where the values are the digits of the key.

This will give hash values that cover the full range from 0 to m-1 ... but it still may not be ideal

in that the hash values may not be completely evenly distributed. For example, if the

maximum sum value is only slightly larger than , the first part of the table will be "hit"

more often. Similarly, if the maximum result is quite a bit less than then the last part of the

table will not be “hit” at all. In an ideal world, the sum values would be evenly distributed.

The selection of an optimal value for is outside the scope of this course but I recommend

studying it if you are interested. For our purposes, it is worth noting that many people

choose a prime for when using this hash method, on the grounds that a prime value of is

less likely to lead to clustering among the keys. Other people make a power of 2 (for

example, 128 seems to be popular). One reason for this choice is that if we can perform bit

level operations on integers, multiplying by a power of 2 is just a left-shift.

Here’s another hashing function that is sometimes proposed:

This violates at least two of the criteria. First, consider the last digit of the key. We can make

a table of the full relationship between the last digit of and the last digit of

Last digit of Last digit of

0 0

1 1

2 4

3 9

4 6

5 5

6 6

7 9

8 4

9 1

It’s pretty obvious that even if the keys have uniformly distributed final digits, the final digits

of the squares will not be uniformly distributed (for example, the last digit of the square of

the key will never be 3 or 7 or 8).

Now suppose our keys are 5 digit numbers. Consider the square of 12345:

12345
 x 12345

61725
 49380
 37035
 24690
 12345

 152399025

When we look at this result, we can see that its last digit is completely determined by the last

digit of the key, and the first digit is determined by the first digit of the key (with the

possibility of a carry from the second column). Similarly the second-last digit is determined

only by the last two digits of the key, and the second digit is determined mostly by the first

two digits of the key (again, with the possibility of a carry from the previous column).

So the digits of the key do not all contribute equally to the hash value. Fixing this problem

leads to a very well-known hashing function called the mid-square method. As you might

guess from the name, this involves squaring k and taking only the middle digits of the square

(where "middle" needs to be carefully defined).

If we want to give equal weight to all digits of the key, it makes sense to throw away the first

digits and the last digits of the square since these are based on just a few digits of the key.

But here we have to compromise. Based on the argument just given, the only digit of the

square that is based on all 5 digits of the key is the middle one where we see

6
9
0
9
5

But if we throw away all the other digits of the square except the one at the foot of this

column, we end up with a one digit hash value (in this case, 9). Since we started with

possible keys, a hashing function that only produces 10 possible hash values is not very

useful.

So we include some of the digits on either side of this central digit. It’s a trade-off: the more

digits we include, the greater the range of values we get … but also the more bias we create

by giving greater importance to the beginning and ending digits of the key. Here we can use

information about the expected size of our data set to guide our decision. For example, if we

know that will be under 1000, then we can pull 3 digits out of the middle of … this

gives hash values in the range [0 … 999] and it involves all digits of the key more or less

equally.

The hashing function for this example would look something like this:

mid_square(k):
 s = k*k # s will have up to 10 digits
 # (note that if k is very small, most digits

 # of s will be 0)

 x = s / 1000 # this gets rid of the last three digits
 a = x % 1000 # this keeps just the three digits we want
 return a

Once again we can see that if we do all operations at the bit level, extracting the middle bits of

the square can be done very quickly using shifts etc.

We need to return to the point raised in the algorithm, regarding what happens when k is

small. If the keys are 5-digit integers drawn uniformly from the range [0 ... 99999] then some

of them will be so small that when we apply the mid-square method we end up with 0. For

example, if k = 12 (ie. 00012) then s = 0000000144 and the mid-square method gives a = 0 ... as

it will for any other very small value of k. This is not much of a problem, but it illustrates that

when the key is very small, all (or almost all) of its information is lost when we discard the

right-hand digits of the square.

Thus the mid-square method is most useful when we can be sure that few of the keys are very

small.

The mid-square method (with suitable precautions regarding small key values) satisfies the

four criteria pretty well.

A very popular hashing method is called the multiplication method. The basic idea is to

multiply each key by a fixed value , throw away the “high end” of that, then multiply the

result by m and throw away the “low end” of that – which makes it a bit like the mid-square

method. There are different forms of the multiplication method. Here we will use a

multiplier that is between 0 and 1 – this makes it very easy to discard the parts of the numbers

that we don’t want to keep:

 # choose a value V in the range (0...1)
 # the same V is used for hashing all keys

 h(k):
 x = fractional part of V*k
 return floor(m*x)

For example, let , let and let

, of which the fractional part is

So

Note that we don’t have to add a operation to the end of this calculation. Since

, must be in the range

The choice of V is obviously important. Choosing V = 0.5 would be very bad since x would

always be either 0 or 0.5. Donald Knuth, who writes with a great deal of authority and is

usually right about such things, says that a very good value for V is

This works out to approximately 0.61803398875 . Interestingly, the Golden Ratio is

1.61803398875… In other words, Knuth’s magic hashing number is the fractional part of the

Golden Ratio … and it is also exactly equal to the inverse of the Golden Ratio. Math is cool.

Once again it is worth pointing out that if is a power of 2 then computing is just a

left-shift, which can be done very quickly at the hardware level.

The multiplication method is hugely popular.

The last hashing function we will look at is called tabulation hashing. Its earliest form was

invented by Albert Zobrist in 1969. Zobrist used it as a method to keep track of chess-game

positions.

Tabulation hashing is usually described in terms of bit-wise operations. For simplicity we

will assume that all our keys are exactly bits in length, and that for some integers

 and – we will talk about how to choose and a bit further along . We think of each key

as consisting of blocks, each block consisting of bits.

For example, we can think of 40-bit keys as consisting of 5 blocks of 8 bits.

Let m be a power of 2 … that is, let . Thus we want to map keys in the range

 to addresses in the range

We create a table (array) Z with rows and columns, and we populate each cell of the

table with a randomly chosen integer in the range (that is, a randomly chosen

bitstring of length). The table is created once and then used for all calculations of .

The hashing function is now defined by

tabulation(k):
treat k as a string of b bits

 h = bitstring consisting of p 0’s # or p 1’s
that is, h = 000000...0 or h = 111111...1
for (i = 0; i < r; i++)

x = k[i*t .. (i+1)*t-1]
x is the next block of t bits in k
row = (int) x
#row is an integer in the range [0..2^t - 1]
temp = Z[row][i] # pick one of the bitstrings in

 # column i of the array
h = h XOR temp # we exclusive-or h and temp, giving

 # an updated value for h
 return (int) h # interpret h as an integer in the range

 # [0..2^p - 1]

The basic idea is that we use each block of t bits to choose a particular bitstring from one of

the columns of Z, then we exclusive-or all the chosen bitstrings together to get the final hash

value.

An example may help: Let , and choose and . Also, let . The

array Z will have rows and columns. Each cell will be occupied by a randomly-

chosen bitstring of length .

Row Block 0 Block 1 Block 2 Block 3 Block 4

0 Table is filled With Random Bitstrings Of length 10

1

2

...

109 1011101001

...

167 0111001111

...

255

Suppose k = 01101101 10100111 11001100 01010110 11100011

h is initialized to 0000000000

The first block is 01101101, which is the integer 109. Suppose Z[109][0] = 1011101011

We XOR this with h, giving 1011101011 as the new value of h

The second block is 10100111, which is the integer 167. Suppose Z[167][1] = 0111001111

We XOR this with h, giving 1100100100 as the new value of h

We continue, using the third block to choose a bitstring from column [2] of Z, and then

using the fourth block to choose a bitstring from column [3], and

the last block to choose a bitstring from column [4]

Suppose the final value of h is 0111101101, which is the integer 493

Thus h(01101101 10100111 11001100 01010110 11100011) = 493

This is a very good hashing function, according to our criteria – assuming the random

bitstrings in the table are uniformly distributed, each bit of the key has equal weight and the

hash values cover the entire address space uniformly. The computation is fast – just type

conversions, table look-up and XOR. Finally, changing any bit of the key will potentially

change every bit of the result – it is highly discontinuous.

The choice of and determine the size of the table Z (it has rows and columns).

Clearly there can be options: if , we could use a table with column and rows, 2

columns and rows, columns and rows, etc all the way up to columns and rows.

It seems that is a popular choice in the literature since then each block is exactly one

byte. If is a prime or some other awkward number we may need to pad each key with

some extra bits at the end to bring it up to a length that is easy to break into blocks.

You may be wondering why we populate the Z table with randomly chosen bitstrings … why

not work out an optimal set of bitstrings to maximize the quality of the hashing function?

One answer is that the expected performance of randomly chosen bitstrings can be shown to

be very good. Since hashing is about good expected performance, this is all we need.

Going Forward

There are hundreds (if not thousands) of other hashing functions in the literature and on the

web – some simple and some complex – and more are created every year. Hashing functions

and other related functions have become essential tools in such diverse fields as

cryptography, document verification and pattern matching. I encourage you to explore these

topics.

Hashing Functions for Strings

A very frequently encountered situation is where the keys are strings of characters (personal

names, for example, or significant words in a document).

Our approach will be to look at algorithms that convert strings to integers. Once we have

done that we can apply any of the hashing functions we have already seen (or any of the

limitless set of hashing functions that we did not look at).

All of these algorithms work on the individual characters of the string to be hashed.

In some languages characters and integers are not distinguished. This means we can simply

do arithmetic directly on the characters. In other languages we use a function that is typically

called ord() to find an unique integer associated with each character. You may want to read

about the history of the ASCII sequence, the UNICODE sequence, and the ancient EBCDIC

sequence.

Kernighan and Ritchie offer the following simple algorithm

h(s): # s is a string
a = 0
for x in s:

a += ord(x)
return a

It’s simple … and terrible. It has all the flaws of the “sum the digits” hashing function for

integers that we looked at earlier.

However, we can easily fix it the same way as we fixed that one: by introducing a constant

multiplier and using this algorithm

h(s): # s is a string
a = 0
for x in s:

a = a*c + ord(x)
return a

A popular and widely cited version of this is credited to Dan Bernstein. It is reported to give

excellent results

djb2(s): # s is a string
a = 5381
for x in s:

a = a*33 + x
return a

The reasons for starting at 5381 instead of 0, and for choosing 33 as the value of are

complex – you can read about this here:

http://stackoverflow.com/questions/1579721/why-are-5381-and-33-so-important-in-the-djb2-

algorithm

but there is one simple thing we can note about 33. Since 33 = 32 +1, we can rewrite

a = a*33 + x

as

a = a*32 + a + x

and as we have observed so many times, multiplying by a power of 2 (in this case we are

using) is just a left shift of the bits. So we don’t actually have to do any

multiplication.

A sophisticated consideration when hashing strings that are English words of a fixed length

(such as you are asked to do in Assignment 4) is that the letters of the alphabet are not

distributed equally in common words, and not distributed equally in certain positions in the

words. For example the letter “e” shows up far more frequently than the letter “z” - a

hashing function might be designed to downplay the significance of “e” and increase the

significance of “z” in a word. Similarly the distribution of letters that occur as the first letter

of words is extremely non-uniform: comparatively few words start with “j”, and hardly any

start with “x”, whereas there are many thousands of words that start with “t”. A function

that converts words into (hopefully unique) integers might emphasize positions, letters (and

even combinations of letters) that distinguish words from each other.

http://stackoverflow.com/questions/1579721/why-are-5381-and-33-so-important-in-the-djb2-algorithm
http://stackoverflow.com/questions/1579721/why-are-5381-and-33-so-important-in-the-djb2-algorithm

