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Let G be a graph with weights on the edges.  We define the weight of any subgraph of G to be

the sum of the weights of the edges in the subgraph.  

One of the classic problems in graph theory can be stated thusly: given a connected graph G 

with non-negative  weights on the edges, find a subgraph T of G such that:

1. T contains all vertices of G

2. T is connected

3. the weight of T is  the weight of every subgraph that satisfies requirements 1 and 2

It is not hard to see that T must be a tree – if T contains a cycle we can reduce its weight by 

eliminating one edge of the cycle.  This explains the choice of “T” as the name of the subgraph

we are looking for.

So our goal here is to find a minimum weight spanning tree … and because humans love 

shortcuts, we always leave out the word “weight” and just call this the Minimum Spanning 

Tree problem … which we abbreviate even further to “the MST problem”.

We have already seen two algorithms that find spanning trees of a graph: Breadth-First 

Search and Depth-First Search.   These both ignore weights on the edges and so they 

obviously can’t be counted on to find a minimum spanning tree … but it might seem 

plausible that we could somehow modify them to solve this problem.

For example, in BFS we add neighbours of the current vertex to the queue in a random order 

… what if we added them in order of the weight of the edges that join them to the current 

vertex?   Similarly, in DFS we might decide to always choose the neighbour of the current 



vertex that has the lowest-weight edge from the current vertex.  Try to find graphs where 

these modifications fail to find a MST.

Those suggestions may have got you thinking about some of the other data structures we 

have studied.  For example, is there some way that BFS  or DFS could put vertices into a 

priority queue so that we we choose the next vertex in such a way that we do get a MST?   

Well … hold that thought!

There are many algorithms that solve the MST problem – we will look at two of the most 

famous ones.  We’ll spend a lot more time on the first one because once you understand that, 

the other is very easy to learn.

Both algorithms are based on a completely generic algorithm that we will state here – this 

algorithm can also be used as a template for other generic algorithms to solve other problems.

In this generic algorithm we will build an MST one edge at a time.  We start with an empty set

of edges and carefully add edges to it until we end up with an MST

Let S be a subset of the edge set of a weighted graph G.  We say S is safe if there exists an 

MST of G that includes all the edges in S.  Clearly the empty set is safe.

Generic MST():

S = {}
while |S| < n-1:

find an edge e such that S + e is safe
S = S + e

Every spanning tree must have exactly n-1 edges.  This algorithm preserves the safety of the 

edge-set it is building, and when it reaches n-1 edges the final edge added must complete the 

MST.

The hard part, of course, is “find an edge e such that S + e is safe”  We have to 

make sure the algorithm makes good choices … and we want it to make them quickly.



Prim’s Algorithm

The algorithm that we are calling Prim’s Algorithm was actually first discovered in 1930 by 

Jarnik.  Prim rediscovered it in 1957, and Dijkstra re-rediscovered it in 1959.  Because of this 

history it is sometimes called Jarnik’s Algorithm, the Prim-Jarnik Algorithm, the Prim-

Dijkstra Algorithm, or the DJP1 Algorithm.  I’ll stick with Prim’s Algorithm.

Prim’s Algorithm effectively grows a MST from scratch: it starts with a single vertex, then 

chooses an edge that connects another vertex to the first one, then chooses another edge that 

connects another vertex to one of the two already chosen, and so on.  The tree continues to 

grow until it contains all n vertices.  The criterion by which edges are selected is really simple:

we always choose the least-weight edge that has one end in the tree and one end in the set of 

vertices we haven’t reached yet.

You can see how this fits the generic algorithm stated above.  Prim is asserting that by 

choosing the least weight edge that has one end among the vertices already connected 

together and the other amongst those vertices not yet added to the tree, we are guaranteed to 

always maintain the safety of the edge-set.

You may be asking questions like:

- How do we decide which vertex to start at?

- What do we do if two or more edges are tied for being the least-weight edge from the 

tree to the rest of the graph?

- How do we know the result we get is an MST?

Here are the tough-guy answers that mad-scientist/evil-genius Prim gives to  these questions:

- It doesn’t matter where you start.  I’ll still find an MST.  You can’t stop me!

- You can pick either one!   It doesn’t make any difference.

- You want the truth?  You can’t handle the truth!  I’ll never tell.

Fortunately he’s kidding about that last answer.  We’ll prove the correctness of Prim’s 

algorithm later.  For now we will focus on expressing the algorithm clearly, looking at several

implementations, and analyzing their complexity.

1 The DJP Algorithm should not be confused with the DVP Algorithm, which basically equates to “drive like a maniac 
and change lanes without signaling or looking as often as possible. “



Here is one way to express the algorithm in a semi-formal way.

def Prim(G): # G is a connected graph with weighted edges

choose any vertex v
S = {} # S is the set of edges we are 

#  choosing
T = {v} # T is the tree we are growing
R = {all vertices except v} # R is the rest of the vertices

while |S| < n-1: # keep going until S contains n-1 
# edges

let e be the least-weight edge that has one end in T
and one end in R

suppose e = (x,y) with x in T and y in R
add e to S
add y to T
remove y from R

return S

Everything in that algorithm is trivial except for
let e be the least-weight edge that has one end in T

and one end in R

We need to think very carefully about how to implement the location and selection of the 

appropriate edge.

There are at least four solutions.

Solution 1:

We can take the set of all edges and sort them into ascending-weight order.  This takes 

O(m* log m) time.  Now when we choose the least-weight edge that has one end in T and one 

end in R, we can do that by searching the list of edges from the beginning and stopping as 

soon as we find an edge that meets the criterion.  Note that every search has to start at the 

beginning of the list because the low-weight edges may have originally had both ends in R.  

So we have to do n-1 searches (to choose the n-1 edges of the MST) and each search takes 

O(m) time … this gives O(m*n) as the complexity.  That’s pretty bad … let’s try again.



Solution 2:

At each iteration we need an edge that has the smallest weight, out of the edges that are 

available (ie that have one end in T and the other end in R).  We have seen a data structure 

that makes it easy to repeatedly find the largest element, but here we need to find the 

smallest element.  So instead of a Max-heap, we need a Min-heap.  Fortunately the structural 

rules of Min-heaps are identical to Max-heaps, and the “relational” rule is just reversed: each 

value is  its children, rather than  its children.  This results in the smallest item being at the

root.

We could start by putting all the edges into the heap, but this would be wasteful – the edge at 

the top of the heap might not be usable because both of its ends are in R – we would need to 

remove it and then re-insert it into the heap later.  To avoid this, we only add edges to the 

heap when they have one end in T and one end in R.   Later we may need to discard some of

these edges because both ends are now in T, but that’s not too much trouble.

We can write this version of Prim’s MST Algorithm quite completely.  This assumes that there

is a function weight(x,y) that returns the weight of the edge joining x and y.



def Prim(G): # G is a connected graph with weighted edges

choose any vertex v
S = {} # S is the set of edges we are 

#  choosing
T = {v} # T is the tree we are growing
R = {all vertices except v} # R is the rest of the vertices

create a Min-heap called M

for each neighbour y of v:
add the item [ (v,y) , weight(v,y) ] to M, using the 

weight value as the “priority”

while |T| < n: # keep going until S contains n-1 
# edges

e = M.remove_top()
# e consists of a pair of vertices (a,b) and a weight value
# When e was added to the Min-heap, a was in T and b was in
# R … we need to see if that is still true … if not we need
# to try the new top item in M
while b in T: # loop until we have a usable edge

e = M.remove_top()

#  e = (a,b) with a in T and b in R
add e to S
add b to T
remove b from R
for each neighbour y of b:

if y in R:
add the item [ (b,y), weight(b,y) ] to M, using

the weight value as the “priority”

return S

It’s useful to think about what would happen if we tried to run this algorithm on a graph that 

is not connected.  Clearly the algorithm must fail because a disconnected graph cannot have a

spanning tree at all.  The question to think about is … where would the error occur?   How 

would you modify the algorithm so that it terminates gracefully on a disconnected graph?

Now we can work out the  complexity of this version of the algorithm.  Clearly the 

“remove_top” operations are the dominant steps.  In the worst case, every edge will 

eventually  be added to the heap, and every edge will eventually be removed from the heap.  

Since the maximum size of the heap is m, we know adding to the heap and removing the top 

element from the heap are both in O(log m).  Combining this with the fact that each of these 

steps could execute m times, we end up with m * O( log m) which is equal to O( m * log m)

But we can simplify that a bit – recall that      m   <   



so log(m) <   log  = log( ) – log 2  = 2*log(n) – 1, which is in O(log n)

This means we can rewrite O(m * log m) as O(m * log n) … which is a lot better than O(m*n)

Clearly if the graph is sparse, with m in O(n), then this algorithm runs in O(n * log n) time.

However if the graph is dense, with m in   , then this algorithm runs in O( ) 

time.

Maybe we can beat that … we have two more possible solutions to look at.

Solution 3:

In Solution 2 we spent a lot of time putting edges in and out of a big Min-heap, and there was 

always a possibility that we would have to remove many edges from the top of the heap 

before finding one we could use.  We can attempt to avoid this by using a heap containing 

vertices instead of edges.

In this solution, we  use a heap that contains one node for each vertex in R.  Every time we 

add a vertex to T, we see if it gives us a new, less costly connection to any of the vertices in R.  

If it does, we move the corresponding node upwards in the heap (aha! this is why we learned 

about changing priorities of items in a heap!)

This heap will initially contain n-1 nodes (the start vertex never needs to be in the heap).  The 

node at the top will correspond to the vertex in R with the least cost edge to T, so we know we

can always use the top node – there will never be a need to discard the top node and get 

another one.  

This is looking good … let’s look at it closely.  There are no insert operations after the initial 

build since we build the heap with all n-1 vertices of R, and after that we only remove things. 

Each remove_top operation takes O(log n) time and there are only n-1 vertices to remove, so it

looks like we are heading towards  O(n * log n) complexity.   But … we also have to consider 

the updates.   

Doing an individual update on the heap takes O(log n) time … so if we do the updates 

individually, the total amount of work spent on heap updates is O(m * log n) because each 

edge might cause an update.  This means that for sparse graphs the algorithm is in               

O(n * log n).   However, if the graph is very dense (complete or nearly complete) then it is 



possible that every time we add a vertex to T, it could give us a reduced cost to every vertex in 

R.  Doing the heap updates individually will be O(  * log n).  This is just the same as 

Solution 2.

However, we know from our study of heaps that if we need to update the priority of every 

item in the heap, the best thing to do is just rebuild the heap from scratch – and that is an O(n)

operation.  If we rebuild the heap on each iteration of the loop, we end up with O( ) for the 

whole algorithm.  This is better than Solution 2 for dense graphs, but worse on sparse graphs.

The challenge with this version of the algorithm is deciding when we should rebuild the 

heap, and when we should just do the updates one by one.  One option would be to rebuild 

the heap whenever the number of updates caused by a single vertex is  greater than some 

threshold value, but do the updates one at a time when the number is below this threshold.  

Determining an appropriate threshold value is a very difficult problem – it helps if you have a

priori knowledge about the size and density of the graphs you will be dealing with.  If you do

have this information you can simply have two versions of the algorithm – one for sparse 

graphs and one for dense graphs.

This difficulty comes from the fact that for a specific graph G with n vertices and m edges, we 

can certainly say that G is sparse if m is close to n, and G is dense if m is close to   … but 

values of m that are near the middle of the range of possibilities are harder to classify.

You can work out the pseudo-code for this version of Prim’s Algorithm – it is a lot like 

Solution 2, with added operations to do the heap updates/rebuilds.



Solution 4:

We can simplify Solution 3 by ditching the heap (I liked the heap, but maybe we don’t need 

it).   We can just keep an array of all the vertices in R, together with their minimum cost to 

connect to T, and the vertex they would connect to (this allows us to keep track of the edges 

we are using).  Every time we add a vertex to T, we look at its neighbours and, if necessary, 

we update their “best connection” info.  To find the next vertex to connect, we just do a linear 

search of the array.  This array would look something like this (I have added row labels)

Vertex 1 2 3 4 ... n

Still in R? N N Y Y ... Y

Connector - - 2 12 ... 6

Cost - - 8 3 ... 9

Suppose that on the next iteration we find that vertex 4 has the lowest connection cost.  We 

add the edge (12,4) to our set S of Tree edges, we add vertex 4 to T, and we update vertex 4’s 

neighbours.  Suppose there is an edge from vertex 4 to vertex n with cost 7.  This is an 

improvement over the current cost (9) to connect vertex n, so we update this information.  

Suppose there is an edge from vertex 4 to vertex 2 – we ignore this because vertex 2 is not in R

– it has already been added to T.  Suppose there is an edge from vertex 4 to vertex 3 with cost 

15.  This is greater than the current cost to connect to vertex 3, so we ignore it.

The array would now look like this:

Vertex 1 2 3 4 ... n

Still in R? N N Y N ... Y

Connector - - 2 - ... 4

Cost - - 8 - ... 7

We would start the next iteration by searching the array for the vertex in R with the lowest 

connection cost, and repeat the update process.

The complexity of this version of Prim’s Algorithm is very easy to determine.  We need n-1 

iterations, each of which involves a linear search of the array – this is O( ).  The total 

number of updates is    m, and each update takes constant time.   Thus the entire algorithm 

takes O( ) time … but since m < , this simplifies to O( ).   Note that this version is 

not sensitive to the density of the graph – it is O( ) whether the graph is sparse or dense.



Pseudo-code for this algorithm looks something like this:

def Prim(G):
# we will start our tree with vertex 1 – why not?
Create array A with three rows (1,2,3) and n columns (1, … n)
# row 1 is “Still in R”
# row 2 is the connector vertex
# row 3 is the cost
# note that I have not bothered with a row to store the vertex 
#   numbers since they are just the column numbers
A[1][1] = N # vertex 1 is not in R
for x = 2 .. n:

A[1][x] = Y
A[2][x] = -
A[3][x] = infinity

for each neighbour y of vertex 1:
A[2][y] = 1
A[3][y] = weight(1,y)

T = {1}
S = {} # S is the set of edges we are 

#  choosing
while |S| < n-1:

search A for the vertex still in R with the smallest 
value in the third row 

let this vertex be x
add x to T
add the edge (x,A[2][x]) to S
A[1][x] = N
A[2][x] = - # these are not really needed, they just
A[3][x] = - # make it easier to see which vertices are 

# still available
for each neighbour y of x:

if y is still in R and weight(x,y) < A[3][y]:
A[2][y] = x
A[3][y] = weight(x,y)

return S



Concluding Observations::

Solution 1 is just bad.

Solution 2 is efficient on sparse graphs,  but inefficient on dense graphs.

Solution 3 can have exactly the same complexity as Solution 2 (good on sparse, not so good on

dense), or exactly the same complexity as Solution 4 (good on dense, not so good on sparse).  

It is difficult to achieve the best of both worlds.

Solution 4 has the same complexity on all graphs (which makes it good for dense graphs, but 

not so good for sparse graphs).

Sparse Graphs

m  O(n)

Dense Graphs

m 

Solution 1 O( ) O( )

Solution 2 O(n * log n) O(  * log n)

Solution 3 O(n * log n) or O( )  O(  * log n) or O( )

Solution 4 O( ) O( )

The complexity of Solution 3 depends on whether we do the heap updates individually or by 

rebuilding the heap on each iteration.

Is this the end of the Prim implementation story?   Not at all!  Using data structures called 

Fibonacci Heaps it is possible to reduce the complexity to O(m + n*log n) for all graphs … and

the search continues for further improvements.


