
Question 1:   (10 Marks)   

Let G be a graph with n vertices and m edges.

What data structure would you choose to represent the graph, so that it is 

possible to quickly determine the number of neighbours shared by two 

arbitrarily selected vertices?  Explain your choice.

For example, in this graph Vertex 3 and Vertex 6 share exactly one neighbour 

(Vertex 2).

Solution:  

I would represent the graph by an adjacency matrix.  We can determine the 

shared neighbourhood of two vertices in O(n) time by “OR”-ing together their 

rows of the adjacency matrix.

Using adjacency lists would take O( ) time if the lists are unordered, or O(n) 

time if each list were kept in sorted order – but that takes more time to 

maintain the lists.

Bonus observation:  if each vertex has degree  k where k is a fixed value, then 

the graph should be stored as a set of adjacency lists because this permits the 

shared neighbourhood of any two vertices to be computed in O(1) time.



Marking:

For choosing adjacency matrix and explaining why 10/10

For choosing adjacency matrix and not explaining 7/10

For choosing adjacency lists and giving an explanation 7/10

For choosing adjacency lists and not explaining 5/10

For choosing some other structure (heap, queue, etc) 3/10

For trying 1/10



Question 2 (15 marks):  

As we know, a tree is a graph that contains exactly one connecting path for each 

pair of vertices in the graph.

Suppose T is a tree on the vertex set  with the edges stored in a list 

E, where each edge is in the form of a pair of vertices.   The edges are randomly 

ordered in the list.

For example , if T looks like this

Then the list E might look like this:  Head (1,5) (3,2) (5,4) (2,5)  Nil

Describe how, given vertices x and y,  you would find the path in T that 

connects x and y.  You do not have to write a full pseudo-code algorithm 

(unless you want to!) but do give enough detail to make it clear how your 

solution works.

 Be sure to identify any data structures that you use in your solution.

For full marks, your solution should run in O(n) time. 

Write your solution on the next page.



Write your solution to Question 2 on this page.

Solution: 

Since a tree on n vertices contains exactly n-1 edges, the length of E is n-1.

Step 1:  Traverse E once and build adjacency lists for all vertices.  This takes 

O(m) time, which for this graph is O(n) time.

Step 2: Use BFS to start at x and explore the tree.   BFS uses a queue to keep 

track of the vertices.  For each vertex added to the queue, record its 

“predecessor” in its path from x.  This can be done with a field in each vertex 

object, or in a separate 1-dimensional array with one element for each vertex.

Using adjacency lists BFS takes O(m) time, which for this graph is O(n) time

Step 3: When y is added to the BFS tree, the algorithm terminates.  The x-y path

can be recovered in O(n) time by extracting the predecessor of y, then the 

predecessor of that vertex, etc.

Each of the 3 steps of the algorithm takes O(n) time, so the entire algorithm 

takes O(n) time.

Marking:

For a choice of d.s. that solves the problem in O(n) time,

with explanation 15/15

For a choice of d.s. that solves the problem in O(n) time,

without explanation 13/15



For a choice of d.s. that solves the problem in O(n log n) time 

or O( ) time, with explanation 11/15

For a choice of d.s. that solves the problem in O(n log n) time 

or O( ) time, without explanation 9/15

For a choice of d.s. that solves the problem in higher order time,

with explanation 8/15

For a choice of d.s. that solves the problem in higher order time,

without explanation 7/15

For a choice of d.s. that doesn’t solve the probem 4/15

For trying 1/15



Question 3 (15 marks) :   

Consider the following spanning tree algorithm, which is very similar to one of 

the algorithms we have studied.  (The spanning tree it builds is not a minimum 

spanning tree, but that is not important for this question.)  Examine the 

algorithm and then answer the questions stated below.  You can assume that in 

the graphs to which the algorithm will be applied,    (  is the 

number of edges, and  is the number of vertices).  You do not need to 

understand the purpose of the algorithm to answer this question.

def test_alg(x): # x is a vertex

# initialization
S = {} # S is the set of edges that will be selected
T = {x} # The vertices we have connected to the tree
R = V – {x} # The rest of the vertices

for each v in R:
     F[v] = 0 # value of v
     N[v] = None # best neighbour of v

for each neighbour y of x:
     F[y] = weight(x,y) # weight(x,y) is the weight 

#  of the edge from x to y
     N[y] = x

# main loop
while |T| < n-1:
     Let v be the vertex in R with the largest F value
     S = S + {(N[v],v)}
     T = T + {v}
     R = R – {v}
     for each neighbour z of v:

if (z is in R)  and (min(F[v],weight(v,z)) > F[z]):
          # update F[z] and N[z]

     F[z] = min(F[v],weight(v,z))
     N[z] = v

return S

The question continues on the next page.



a)  [10 marks] What data structure would you use to store the graph G?  Why?

Solution:

The best data structure for G would a set of adjacency lists, because of the “for each 

neighbour z of v:” loop.  With an adjacency matrix this would always take O( ) total time. 

With adjacency lists, this loop takes O(m) time … which for the graphs we are given is O(n) 

Marking:

For “adjacency lists” with explanation (the explanation does not 

need to include a comparison with an adjacency matrix) 10

For “adjacency lists” with invalid explanation (eg “easier to implement”) 7

For “adjacency lists” with no explanation 6

For “adjacency matrix” with attempted justification 5

For “adjacency matrix” with no justification 4

For non-sensical data structure (hash table, etc.) 3

For trying 1



b)  [5 marks] What data structure would you use to keep track of which vertices 

are in R?  Why?

Solution:  We should keep track of the vertices in R using a max-heap, using the

F values computed by the algorithm to compare the vertices.  The max-heap 

will have height   , so the n-1 “remove a vertex from R” actions will 

result in O( ) operations.  Since the number of edges is in O(n), the 

updates to the heap (based on changed F values) will also result in O( ) 

operations.  This choice of data structure results in a very efficient 

implementation of the algorithm.

Marking:

For “max-heap” (students may just say “heap” - that’s ok) 

with explanation 5

For “max-heap” (or “heap”) without explanation 4

For a plausible alternative (such as “a 1-d array of booleans”

or “a linked list of vertices”) that results in higher complexity 3

For a non-sensical data structure, such as “stack” 2

For trying 1


