CISC-235*
 Test \#1
 January 24, 2020

Student Number (Required) \qquad

Name (Optional) \qquad

This is a closed book test. You may not refer to any resources.
This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be re-marked under any circumstances.

The test will be marked out of 50 .

Question 1	$/ 10$
Question 2	$/ 16$
Question 3	$/ 14$
Question 4	$/ 10$
	$/ 50$
TOTAL	

By writing my initials in this box, I authorize the disposal of this test paper if I have not picked it up by April 15, 2020.
"Fill your house with stacks of books, in all the crannies and in all the nooks"

Question 1 (10 marks)

(a) [5 marks] Prove the following statement:

If $f(n) \in \Theta(g(n))$, then $g(n) \in \Theta(f(n))$

Solution:

$$
\begin{aligned}
& f(n) \in \Theta(g(n)) \Rightarrow f(n) \in O(g(n)) \text { and } f(n) \in \Omega(g(n)) \\
& \Rightarrow f(n) \leq c_{1} * g(n) \text { and } f(n) \geq c_{2} * g(n) \\
& \quad \quad \text { for some } c_{1}, c_{2}>0 \quad \forall \text { large n } \\
& \Rightarrow g(n) \geq \frac{1}{c_{1}} * f(n) \text { and } g(n) \leq \frac{1}{c_{2}} * f(n) \\
& \Rightarrow g(n) \in \Omega(f(n)) \text { and } g(n) \in O(f(n)) \\
& \Rightarrow g(n) \in \Theta(f(n))
\end{aligned}
$$

Marking:
Sound proof
5 marks

Proof with a small error
4 marks

Proof with major flaw, but shows understanding of O, Ω, Θ

3 marks

Random words and symbols
1 mark
(b) [5 marks] Prove the following statement:

If $f(n) \in \Theta(g(n))$ and $g(n) \in \Theta(h(n))$, then $f(n) \in \Theta(h(n))$
Solution:

$$
\begin{aligned}
f(n) \in & \Theta(g(n)) \text { and } g(n) \in \Theta(h(n)) \\
& \Rightarrow f(n) \in O(g(n)) \text { and } g(n) \in O(h(n)) \\
& \Rightarrow f(n) \leq c_{1} * g(n) \text { and } g(n) \leq c_{2} * h(n) \\
& \quad \text { for some } c_{1}, c_{2}>0 \quad \forall \text { large n } \\
& \Rightarrow f(n) \leq c_{1} * c_{2} * h(n) \\
& \Rightarrow f(n) \in O(h(n))
\end{aligned}
$$

AND

$$
\begin{aligned}
f(n) \in \Theta(g(n)) & \text { and } g(n) \in \Theta(h(n)) \\
& \Rightarrow f(n) \in \Omega(g(n)) \text { and } g(n) \in \Omega(h(n)) \\
& \Rightarrow f(n) \geq c_{1} * g(n) \text { and } g(n) \geq c_{2} * h(n) \\
& \quad \text { for some } c_{1}, c_{2}>0 \quad \forall \text { large } \mathrm{n} \\
& \Rightarrow f(n) \geq c_{1} * c_{2} * h(n) \\
& \Rightarrow f(n) \in \Omega(h(n))
\end{aligned}
$$

THEREFORE

$$
f(n) \in \Theta(h(n))
$$

Marking:
Same as for Part (a)

Question 2 (16 marks)

Determine the O, Ω and (if possible) Θ classification of the following code segments (which are written in generic pseudo-code):
(a) [8 marks]

```
n = read_int()
A = array[1..n]
B = array[1..n]
for i = 1 to n:
        A[i] = read_int()
for i = 1 to n:
B[i] = read_int()
for i = 1 to n:
        for j = 1 to n:
                        print A[i]+B[j]
```

Solution:
$O\left(n^{2}\right)$
$\Omega\left(n^{2}\right)$
$\Theta\left(n^{2}\right)$

Marking:
O classification 3 marks
Ω classification 3 marks
Θ classification $\quad 2$ marks if it fits with their O and Ω
(b) [8 marks]

$$
\begin{aligned}
& \text { n = read_int }() \\
& \text { if (n mod } 3=0): \\
& \text { for } i=1 \text { to } n * n: \\
& \text { print } i \\
& \text { for } i=1 \text { to } n: \\
& \quad \text { print } i
\end{aligned}
$$

Solution:

$O\left(n^{2}\right)$
$\Omega(n)$
Θ : no classification

Marking: Same as for Part (a)

Question 3 (14 marks)

Let Stack be a class that implements the stack data structure. Each instance of Stack has three defined methods:

push (x)	add x to the top of the stack pop ()
remove and return the top value of the	
stack	

and a single accessible attribute:
count
the number of items currently in the stack
New stacks can be created like this:

$$
\mathrm{S}=\text { new Stack() }
$$

(a) [9 marks]

Let S be a stack containing integer values.

Write an algorithm that will print the number of values in S that are greater than all the values above them in the stack. After your algorithm finishes, S should be back in the same condition as when you started.

Example: If S is 9

$$
23
$$

then the algorithm should print " 3 " because the 4 , the 12 and the 23 are each greater than every value above them in the stack.

Your algorithm may declare and use simple variables and additional stacks, but it must not use arrays, linked lists, hash tables or other structures.

Page for answering Question 3 Part (a)

Solution:
if S.isEmpty():

$$
\text { counter }=0
$$

else:

$$
\begin{aligned}
& \text { temp = new Stack() } \\
& \text { counter = } 1 \\
& \text { max_so_far }=\text { S.pop() } \\
& \text { temp.push(max_so_far) } \\
& \text { while not S.isEmpty(): } \\
& \quad \text { next }=\text { S.pop() } \\
& \text { temp.push(next) } \\
& \text { if next > max_so_far: } \\
& \quad \text { counter }+=1 \\
& \quad \text { max_so_far }=\text { next }
\end{aligned}
$$

while not temp.isEmpty():
S.push(temp.pop()) \# this can be done in 2 steps
print counter

Marking:
Correct algorithm
9 marks
Correct with minor error
(eg using "pop" instead of "push") 7 marks
Correct with major logic error
(eg potential crash due to empty stack, items in stack not in original order)

5 marks
Severely incorrect
(eg student has no idea what to do, but seems to know what a stack is)

3 marks
Random words and symbols
1 mark
(b) [5 marks]

Determine the $O(), \Omega()$, and $\Theta()$ classification of your algorithm, if possible.

Solution:

Let n be the number of values on the stack. Each loop iterates through all n values, doing a constant amount of work on each iteration. There are no special cases where the algorithm does more iterations or fewer iterations. Thus the algorithm is in $O(n)$ and also in $\Omega(n)$. Therefore it is in $\Theta(n)$

Marking:

I forgot to give the "explain your answer" instruction so students can get full marks just by stating the answer.

Correct answer for their algorithm
(which may not be the same as mine) 5 marks

Incorrect answer that shows some understanding of the question

3 marks

Incorrect answer without evidence of understanding
1 mark

Question 4 (10 marks)

Let A and B be one-dimensional arrays of integers, each containing n values.
You may assume that there are no duplicates in A and no duplicates in Bhowever some integers may be present in both arrays.

Write an algorithm that will print only the values that appear in both arrays.
For example if $\mathrm{A}=$

18	7	93	5	59	12	41

and B =

93	85	12	18	34	25	66

Then the output should be $\begin{array}{llll}18 & 93 & 12 & \text { (but not necessarily in that order) }\end{array}$
Your algorithm should be as efficient as possible.
You may assume that there is a built-in sort function that has $O(n * \log n)$ complexity, and a built-in binary_search function that has $O(\log n)$ complexity. Whether or not you use them is up to you.

Write your answer on the next page.

Page for answering Question 4

Solution:

```
\# arrays in my universe are indexed from 1 to n
sort(A)
for \(\mathrm{i}=1\) to n :
    result \(=\) binary_search(A, \(\mathrm{B}[\mathrm{i}]\) )
                        \# Assume binary_search returns -1 if not found
                        \# Some students will supply the first and last index
    \# values for A, such as "binary_search(A,1,n,B[i])"
    if result \(!=-1\) :
        print \(B[i]\)
```

The complexity of the the sort is $O(n \log n)$. The loop executes n times and each iteration includes an $O(\log n)$ call to binary_search so the complexity of the loop is $O(n \log n)$ as well.

Thus the algorithm runs in $O(n \log n)$ time.
Marking:

Students are not required to state the complexity of their algorithm - I included that analysis to demonstrate that $O(n \log n)$ is possible.

For a correct $O(n \log n)$ algorithm
For a correct $O\left(n^{2}\right)$ algorithm
For a correct algorithm of higher complexity

For a minor mistake (eg index error)
For a major mistake (eg fatal logic error)

10 marks
6 marks
5 marks
-2
-4

Notwithstanding the above, a student who clearly understood the question
and tried to answer it should get at least 4 marks.

BONUS QUESTION (|Ø| marks)

What is the meaning of this figure?

