
CISC-235*

Test #2

February 14, 2020

Student Number (Required) ______________________

Name (Optional) ________________________________

This is a closed book test. You may not refer to any resources.

This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be

re-marked under any circumstances.

The test will be marked out of 50.

Question 1 /16

Question 2 /16

Question 3 /15

Question 4 /3

TOTAL /50

By writing my initials in this box, I authorize the disposal of this test

paper if I have not picked it up by April 15, 2020.

“Love is like a tree, it grows of its own accord”

~ Victor Hugo

Here are three class definitions:

class BT_Vertex:

instance variables
value : integer
left_child : BT_Vertex
right_child : BT_Vertex

constructor
def BT_Vertex(x: integer):

this.value = x
this.left_child = nil
this.right_child = nil

class Binary_Tree:

instance variables
root : BT_Vertex
count : integer

constructor
def Binary_Tree():

this.root = nil
this.count = 0

class Binary_Search_Tree:

instance variables
root : BT_Vertex
count : integer

constructor
def Binary_Search_Tree():

this.root = nil
this.count = 0

instance methods
def Insert(x: integer):

this.count++
this.root = rec_Insert(this.root,x)

def rec_Insert(v : BT_Vertex, x : integer):
if (v == nil):
 return new BT_Vertex(x)
else if (v.value >= x):
 v.left_child = rec_Insert(v.left_child,x)
else:
 v.right_child = rec_Insert(v.right_child,x)
return v

Question 1 (16 marks):

Write an iterative algorithm that uses a Stack to compute the number of levels in

a Binary Tree. You do not need to write the Stack class, but you do need to

specify the Type of data the Stack will hold (integer, Vertex, combination of

objects, etc.)

Hint: the root is at level 1. A non-root vertex has level 1 higher than its parent’s

level. Your algorithm can proceed by computing the level of each vertex and

keeping track of the highest level seen.

 This tree has 4 levels

Solution:

I will use a Stack that holds objects in pairs, where the first element in each pair

is BT_Vertex and the second element in each pair is an integer.

def count_levels():
if this.root == nil:

return 0
else:

S = new Stack()
S.push (this.root, 1)
int max_level = 1
while not S.isEmpty():

pair = S.pop()
vertex = pair[0]
level = pair[1]
if level > max_level:

max_level = level
if vertex.left_child != nil:

S.push(vertex.left_child, level+1)
if vertex.right_child != nil:

S.push(vertex.right_child, level+1)
return max_level

OR

def levels():
if this.root == nil:

return 0
else:

S1 = new Stack() # stack of BT_Vertex objects
S2 = new Stack() # ditto
S1.push(this.root)
int max_level = 0
while not S1.isEmpty():

max_level ++
while not S1.isEmpty():

v = S1.pop()
if v.left_child != nil:

S2.push(v.left_child)
if v.right_child != nil:

S2.push(v.right_child)
while not S2.isEmpty():

S1.push(S2.pop())
return max_level

Marking:

Since pseudo-code solutions are accepted, syntax is not important. In particular

the students are not required to use “def” etc which is Python-esque, nor “this”

which is Java-esque. They are not required to specify the Type of their

variables. The important issue is whether their solution is clearly expressed.

Students are not required to solve the problem in exactly the way(s) I did. They

may decide to use two stacks (one for vertices, one for integers) or take another

completely different (stack-based) approach.

For a solution that correctly solves the problem 16

For a solution that incorrectly computes the number of

levels subtract 2

For a solution that neglects to check for the tree being

empty subtract 2

For a solution that only works on one side of the tree,

or tries to access the children of a non-existent vertex subtract 2

For other significant errors of logic subtract 2

For a solution that shows poor understanding of how to

manipulate binary trees subtract 6

For a solution that shows poor understanding of how to

manipulate stacks subtract 6

Notwithstanding the previously listed deductions, a solution that shows a good

understanding of the problem to be solved should not score less than 7

Question 2 (16 marks):

(a) [10 marks] Write a method (or combination of methods) in pseudo-code or in

Java, Python, C or C++ that takes a Binary_Tree object as its parameter, and

returns a new Binary_Tree containing the same values as the original tree, but as

a mirror image. You are not required to use a Stack but you can if you want to.

For example if the original tree is the new tree would be

Solution:

def mirror():
this.root = rec_mirror(this.root)

def rec_mirror(current):
if current != nil:

temp = rec_mirror(current.left_child)
current.left_child = rec_mirror(current.right_child)
current.right_child = temp

return current

OR

def mirror():
if this.root != nil :

S = new Stack() # this stack holds BT_Vertex objects
S.push(this.root)
while not S.isEmpty():

v = S.pop()
if v != nil:

S.push(v.left_child)
S.push(v.right_child)
temp = v.left_child
v.left_child = v.right_child
v.right_child = temp

Marking:

Students do not have to structure their solution in the same way that I do, but

the basic idea is that we just need to switch the left and right children of each

vertex. Any solution that does this will give the correct result.

For a solution that correctly switches all the children 10

For a solution that neglects to see if the tree is empty subtract 3

For a solution that only works on one side of the tree, or tries

to reverse the children of a non-existent vertex subtract 3

For other significant errors of logic subtract 3

For a solution that shows poor understanding of how to

manipulate binary trees subtract 4

Notwithstanding the previously listed deductions, a solution that shows a good

understanding of the problem to be solved should not score less than 4

(b) [6 marks] What can you say about the complexity of your algorithm? If

possible, determine its classification.

Solution:

This algorithm visits every vertex in the tree exactly once, and the

amount of work that is done at each vertex is in O(1) (ie it is bounded above

by a constant) so the algorithm is in O(n).

It is also in by the same observation – the work done is always c*n for

some positive c.

Thus the algorithm is in

Marking:

Their answer should apply to their algorithm.

Correct O() classification of their algorithm: 2

Correct classification of their algorithm 2

Correct classification (or correct statement that there is none) 2

Question 3 (15 marks) :

(a) [10 marks] Write a new method (or combination of methods) for the

Binary_Search_Tree class that takes an integer parameter and prints all

values in the tree that are . The printed values do not have to be in any

particular order. Make your method as efficient as possible in terms of its big-O

complexity. You are not required to use a Stack but you can if you want to.

(b) [5 marks] What can you say about the complexity of your algorithm?

Solution to (a):

def all_le(x):
rec_all_le(this.root, x)

def rec_all_le(current,x):
if current != nil:

if current.value > x:
rec_all_le(current.left_child, x)

else:
print current.value
rec_all_le(current.left_child, x)
rec_all_le(current.right_child, x)

OR

def all_le(x):
if this.root != nil:

S = new Stack() # stack of BT_Vertex objects
S.push(this.root)
while not S.isEmpty():

v = S.pop()
if v.value <= x:

print v.value
if v.left_child != nil:

S.push(v.left_child)
if v.right_child != nil:

S.push(v.right_child)
else:

if v.left_child != nil:
S.push(v.left_child)

Marking:

For an algorithm that gives the correct result and examines

just the vertices it needs to 10

For an algorithm that gives the correct result but doesn’t

take advantage of the lexical ordering in the tree to limit

its work 8

For an algorithm that has the right idea but doesn’t give

the correct output 5

For an algorithm that shows weak understanding of the

problem or poor understanding of binary trees 3

For an algorithm that shows very little understanding of

the problem or binary trees 1

Solution to (b):

In the worst case, this algorithm looks at and prints the value from each vertex

in the tree, and does no more than a constant amount of work at each vertex – so

the algorithm is in O(n).

There are some trees and values of x for which the algorithm terminates after

examining just one vertex (specifically, when the smallest value in the tree is > x

and happens to occupy the root vertex). For these cases the algorithm

terminates in constant time, so we can say the algorithm is in - this means

the algorithm has no classification.

This is a point of confusion because we can also say that the algorithm is

prepared to examine all vertices, so it is in - this means the algorithm is in

Either answer is acceptable.

Marking:

For a valid analysis of their algorithm 5

For an incorrect analysis of their algorithm,

but a good understanding of what they were

supposed to to 3

For an answer that shows very little understanding

of how to address this question 1

Question 4: (3 marks)

(a) A binary tree with 15 vertices must have at least 6 leaves

True False

(b) A binary tree with 15 vertices cannot have more than 8 leaves

True False

(c) For a set of 15 distinct values, there are infinitely many different Binary

Search Trees

True False

Solution:

False, True, False

Marking: 1 point for each right answer

	TOTAL

