CISC-235*
 Test \#2
 February 14, 2020

Student Number (Required) \qquad

Name (Optional) \qquad

This is a closed book test. You may not refer to any resources.
This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be re-marked under any circumstances.

The test will be marked out of 50 .

Question 1	$/ 16$
Question 2	$/ 16$
Question 3	$/ 15$
Question 4	$/ 3$
	$/ 50$
TOTAL	

By writing my initials in this box, I authorize the disposal of this test paper if I have not picked it up by April 15, 2020.
"Love is like a tree, it grows of its own accord"
~ Victor Hugo

Here are three class definitions:

```
class BT_Vertex:
# instance variables
    value : integer
    left_child : BT_Vertex
    right_child : BT_Vertex
# constructor
    def BT_Vertex(x: integer):
        this.value = x
        this.left_child = nil
        this.right_child = nil
class Binary_Tree:
    # instance variables
    root : BT_Vertex
    count : integer
    # constructor
    def Binary_Tree():
        this.root = nil
        this.count = 0
class Binary_Search_Tree:
    # instance variables
    root : BT_Vertex
    count : integer
    # constructor
    def Binary_Search_Tree():
        this.root = nil
        this.count = 0
    # instance methods
    def Insert(x: integer):
        this.count++
        this.root = rec_Insert(this.root,x)
    def rec_Insert(v : BT_Vertex, x : integer):
            if (v == nil):
                return new BT_Vertex(x)
            else if (v.value >= x):
                v.left_child = rec_Insert(v.left_child,x)
            else:
                v.right_child = rec_Insert(v.right_child,x)
            return v
```


Question 1 (16 marks):

Write an iterative algorithm that uses a Stack to compute the number of levels in a Binary Tree. You do not need to write the Stack class, but you do need to specify the Type of data the Stack will hold (integer, Vertex, combination of objects, etc.)

Hint: the root is at level 1. A non-root vertex has level 1 higher than its parent's level. Your algorithm can proceed by computing the level of each vertex and keeping track of the highest level seen.

This tree has 4 levels

Solution:

I will use a Stack that holds objects in pairs, where the first element in each pair is BT_{-}Vertex and the second element in each pair is an integer.

```
def count_levels():
    if this.root \(==\) nil:
        return 0
    else:
        S = new Stack()
        S.push (this.root, 1)
        int max_level = 1
        while not S.isEmpty():
        pair \(=S \cdot \operatorname{pop}()\)
        vertex = pair[0]
                level = pair[1]
                if level > max_level:
                            max_level = level
                if vertex.left_child != nil:
                            S.push(vertex.left_child, level+1)
                if vertex.right_child ! = nil:
                    S.push(vertex.right_child, level+1)
return max_level
```

OR
def levels():
if this.root $==$ nil:
return 0
else:

$$
\begin{aligned}
& \text { S1 = new Stack() \# stack of BT_Vertex objects } \\
& \text { S2 = new Stack() } \\
& \text { S1.push(this.root) } \\
& \text { int max_level = } 0 \\
& \text { while not S1.isEmpty(): } \\
& \text { max_level ++ } \\
& \text { while not S1.isEmpty(): } \\
& \qquad \begin{array}{c}
\text { v S1.pop() } \\
\text { if v.left_child ! = nil: } \\
\text { S2.push(v.left_child) } \\
\text { if v.right_child ! = nil: } \\
\text { S2.push(v.right_child) } \\
\text { while not S2.isEmpty(): } \\
\text { S1.push(S2.pop()) }
\end{array} .
\end{aligned}
$$

return max_level

Marking:

Since pseudo-code solutions are accepted, syntax is not important. In particular the students are not required to use "def" etc which is Python-esque, nor "this" which is Java-esque. They are not required to specify the Type of their variables. The important issue is whether their solution is clearly expressed.

Students are not required to solve the problem in exactly the way(s) I did. They may decide to use two stacks (one for vertices, one for integers) or take another completely different (stack-based) approach.

For a solution that correctly solves the problem
For a solution that incorrectly computes the number of levels
subtract 2

For a solution that neglects to check for the tree being empty
subtract 2

For a solution that only works on one side of the tree, or tries to access the children of a non-existent vertex

For other significant errors of logic
subtract 2

For a solution that shows poor understanding of how to manipulate binary trees
subtract 6

For a solution that shows poor understanding of how to manipulate stacks
subtract 6
Notwithstanding the previously listed deductions, a solution that shows a good understanding of the problem to be solved should not score less than 7

Question 2 (16 marks):

(a) [10 marks] Write a method (or combination of methods) in pseudo-code or in Java, Python, C or C++ that takes a Binary_Tree object as its parameter, and returns a new Binary_Tree containing the same values as the original tree, but as a mirror image. You are not required to use a Stack but you can if you want to.

For example if the original tree is

the new tree would be

Solution:

def mirror():
this.root $=$ rec_mirror(this.root)
def rec_mirror(current):
if current $!=$ nil:
temp $=$ rec_mirror (current.left__child)
current.left_child = rec_mirror(current.right_child)
current.right_child $=$ temp
return current

OR
def mirror():
if this.root $!=$ nil :
S = new Stack() \# this stack holds BT_Vertex objects
S.push(this.root)
while not S.isEmpty():
$\mathrm{v}=\mathrm{S} \cdot \mathrm{pop}()$
if $v!=$ nil:
S.push(v.left__child)
S.push(v.right_child)
temp $=$ v.left__child
v.left__child = v.right__child
v.right_child = temp

Marking:
Students do not have to structure their solution in the same way that I do, but the basic idea is that we just need to switch the left and right children of each vertex. Any solution that does this will give the correct result.

For a solution that correctly switches all the children

For a solution that neglects to see if the tree is empty
For a solution that only works on one side of the tree, or tries to reverse the children of a non-existent vertex

For other significant errors of logic

For a solution that shows poor understanding of how to manipulate binary trees

10
subtract 3
subtract 3
subtract 3
subtract 4

Notwithstanding the previously listed deductions, a solution that shows a good understanding of the problem to be solved should not score less than 4
(b) [6 marks] What can you say about the complexity of your algorithm? If possible, determine its Θ classification.

Solution:

This algorithm visits every vertex in the tree exactly once, and the amount of work that is done at each vertex is in $\mathrm{O}(1)$ (ie it is bounded above by a constant) so the algorithm is in $O(n)$.

It is also in $\Omega(n)$ by the same observation - the work done is always $\geq \mathbf{c}^{*} \mathbf{n}$ for some positive c.

Thus the algorithm is in $\Theta(n)$

Marking:

Their answer should apply to their algorithm.

Correct O() classification of their algorithm:

Correct $\Omega()$ classification of their algorithm 2
Correct $\Theta()$ classification (or correct statement that there is none)

Question 3 (15 marks) :

(a) [10 marks] Write a new method (or combination of methods) for the Binary_Search_Tree class that takes an integer parameter x and prints all values in the tree that are $\leq x$. The printed values do not have to be in any particular order. Make your method as efficient as possible in terms of its big-O complexity. You are not required to use a Stack but you can if you want to.
(b) [5 marks] What can you say about the complexity of your algorithm?

Solution to (a):
def all_le(x):
rec_all_le(this.root, x)
def rec_all_le(current,x):
if current $!=$ nil:
if current.value > x:
rec_all_le(current.left_child, x)
else:
print current.value
rec_all_le(current.left_child, x)
rec_all_le(current.right_child, x)

OR
def all_le(x):
if this.root ! = nil:
S = new Stack() \# stack of BT_Vertex objects
S.push(this.root)
while not S.isEmpty():

$$
\begin{aligned}
& \mathrm{v}=\mathrm{S} . \mathrm{pop}() \\
& \text { if v.value <= } \mathrm{x} \text { : } \\
& \text { print v.value } \\
& \text { if v.left_child }!=\text { nil: } \\
& \quad \text { S.push(v.left_child) } \\
& \text { if v.right_child ! = nil: } \\
& \quad \text { S.push(v.right_child) })
\end{aligned}
$$

else:

$$
\begin{aligned}
& \text { if v.left_child ! = nil: } \\
& \text { S.push(v.left_child) }
\end{aligned}
$$

Marking:

For an algorithm that gives the correct result and examines just the vertices it needs to

For an algorithm that gives the correct result but doesn't take advantage of the lexical ordering in the tree to limit its work

For an algorithm that has the right idea but doesn't give the correct output

For an algorithm that shows weak understanding of the problem or poor understanding of binary trees

For an algorithm that shows very little understanding of the problem or binary trees

Solution to (b):

In the worst case, this algorithm looks at and prints the value from each vertex in the tree, and does no more than a constant amount of work at each vertex - so the algorithm is in $\mathrm{O}(\mathrm{n})$.

There are some trees and values of x for which the algorithm terminates after examining just one vertex (specifically, when the smallest value in the tree is $>x$ and happens to occupy the root vertex). For these cases the algorithm terminates in constant time, so we can say the algorithm is in $\Omega(1)$ - this means the algorithm has no Θ classification.

This is a point of confusion because we can also say that the algorithm is prepared to examine all vertices, so it is in $\Omega(n)$ - this means the algorithm is in $\Theta(n)$

Either answer is acceptable.

Marking:

For a valid analysis of their algorithm 5

For an incorrect analysis of their algorithm, but a good understanding of what they were supposed to to

For an answer that shows very little understanding of how to address this question

Question 4: (3 marks)
(a) A binary tree with 15 vertices must have at least 6 leaves

True False
(b) A binary tree with 15 vertices cannot have more than 8 leaves

$$
\text { True } \quad \text { False }
$$

(c) For a set of 15 distinct values, there are infinitely many different Binary Search Trees

> True False

Solution:

False, True, False

Marking: 1 point for each right answer

