
CMPE/CISC-365

Fall 2019

Week 1 Lab Assignment

Not to be handed in for grading

This week’s lab assignment is very straightforward: create a functioning implementation of

Dijkstra’s Algorithm.

You may write your program in Java, Python, C or C++.

Your program must be able to read the definition of a graph from a text file, apply Dijkstra’s

Algorithm using Vertex 0 as the starting point, and (for the purpose of verification) report the

number of the vertex that is furthest away from Vertex 0

I have provided you with several data files of varying sizes. The name of each file indicates

the number of vertices in the graph defined by the contents of the file. To make your task

easier, I have ensured that each of the graphs is connected.

The format of each file is as follows:

- the first line contains a single integer, identifying the number of vertices in the graph

- each following line contains a sequence of integers defining the next row of the

adjacency matrix of the graph (with weights).

The smallest given graph has 6 vertices. The file looks like this:

6

0 8 0 0 0 18

8 0 7 20 6 6

0 7 0 0 0 13

0 20 0 0 0 5

0 6 0 0 0 3

18 6 13 5 3 0

A zero entry in the matrix indicates that there is no edge joining those two vertices.

Thus this graph looks like this:

The vertex that is furthest from Vertex 0 is Vertex 3, at a distance of 19 (The shortest route

from 0 to 3 is 0 – 1 – 5 – 3. Your program is not required to show the route.)

Here is the pseudo-code for Dijkstra's Algorithm as presented in class. You will need to

translate to a language of your choice and add code to read the contents of the graph file. You

can prompt the user for the name of the graph file, or you can hard-code the file name into

your program.

You can probably find full implementations of Dijkstra’s Algorithm online. I strongly

encourage you to write it yourself. Next week’s lab (which you will be required to submit)

will ask you to modify Dijkstra’s Algorithm to solve a different problem. The modification

will require a good understanding of the algorithm.

0 1

2

34

5

8

7

20

6

6

53

18

13

Goal: Find least-weight paths from A to all other vertices

Weight of edge (v,w) is given by W[v][w]

Cost[A] = 0

Reached[A] = True

for each other vertex x:

Reached[x] = False

for each neighbour x of A:

Estimate[x] = W[A][x]

Candidate[x] = True

for all other vertices z:

Estimate[z] = infinity

Candidate[z] = False

while not finished:

find the best candidate

best_candidate_estimate = infinity

for each vertex x:

if Candidate[x] == True and Estimate[x] < best_candidate_estimate:

v = x

best_candidate_estimate = Estimate[x]

Cost[v] = Estimate[v]

Reached[v] = True

Candidate[v] = False

for each vertex y: # update the neighbours of v

if W[v][y] > 0 and Reached[y] == False:

if Cost[v] + W[v][y] < Estimate[y]:

Estimate[y] = Cost[v] + W[v][y]

Candidate[y] = True

Predecessor[y] = v

You will probably have noticed that with the exception of the small data file that is offered for

you to use when testing the correctness of your implementation, the sizes of the graphs

increase by a factor of 2 (i.e each one has twice as many vertices as the one before.) Time

permitting, conduct some empirical experiments to see if you can identify a pattern in the

average running time of your implementation on these graphs. (This is optional!)

