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Determining the Complexity of Recursive Algorithms

Using Recurrence Relations

We have seen how to compute the Big-O complexity of  programs that involve loops, 

sequences of operations, and if statements.  Now we need to look at recursive functions.

Consider this recursive function:

A(n):
if n  >= 1:

print n
A(n-1)

It clearly makes sense to talk about the number of steps this function executes - there is no 

randomness or unpredictability involved.   Executing a line like

x = A(3)

will always take the same number of steps, and

y = A(7)

will obviously take more steps than 

x = A(6)

so there is a relationship between the size of the input to the function and the number of steps

that are executed ... but what is the relationship?



Let's define some notation.  We will use  to represent the number of steps A(n) 

executes.  By looking at the definition of A we can identify two cases:

1) if n < 1, A executes a constant number of steps - call it .  This lets us state 

2) if n >= 1, A executes a constant number of steps - call it   - followed by a recursive call: 

A(n-1).  But this recursive call must take    steps  (however many that is), so we can

state    

Putting these two things together gives us something called a recurrence relation:

        

Note the strong similarity between the form of the recurrence relation, the form of the 

recursive function, and the form of an inductive proof.  They each have a base case, and a 

recursive/inductive part that uses the result for smaller numbers to obtain the result for larger

numbers.  Understanding induction, recursion and recurrence relations - they all use similar 

thought patterns - they are all part of learning to think like a computer scientist.

All well and good, but we need to establish the Big-O complexity of A(n), and that recurrence 

relation doesn't look anything like the functions we have dealt with before.

We deal with this by transforming the recurrence relation into a closed-form formula : one 

which does not involve any self-reference.  There are many ways to achieve this.  We will use 

one of the most popular, which goes by the name of expansion or substitution.  The basic 

idea is this: we replace the recursive reference to  by a different expression that has

equal value ... but what?



Consider rewriting the recursive part of the recurrence relation as the more generic equation

.  This is clearly still valid - we just changed the n to x.  I’m calling 

it more generic because it is stepping away from the particular value of n that we started 

with, and replacing it with a generic place-holder x.   Now let x = n-1, and substitute this into 

the equation for .  We get

ie

So we substitute this into  and get

Now we expand  to     , and substitute that into the line just above 

this one, and we get

The next expansion gives

Eventually we will get to

ie

We have successfully eliminated the recursive reference to .  The question is, how many  

‘s are there in this expression?



It's not hard to see that at each stage of the expansion, the number of 's plus the number 

inside the   recursive reference always equals n.  (For example, the first line has

.  The next line has  .  Then we 

get      etc.)  So in the line  

there must be n 's, so we can write

But that's something we can easily find the Big O complexity of.  Applying what we have 

already learned, we get

 is in O(n)

We will look at several recurrence relations and for each one we will determine its Big O 

complexity.  You should learn these.  Here again is the one we have just seen:

Recurrence Relation
Big O

Complexity

O(n)



Now consider this recursive function (it doesn't do anything except print a lot of numbers, 

but it is easy to understand)

B(n):
    if n >= 1:
        for i in range(n):
            print i
        B(n-1)

The recurrence relation for the time function of B(n) looks like this

   for     n < 1

    for   n    1

Make sure you understand how this recurrence relation is derived from the definition of 

the function

We solve this the same way as before.  Note that

 

so 

and then

regrouping, we get



Note that the last term in the expression that is multiplied by  is always 1 greater than the 

value in the recursive reference to   (for example, when the multiple of  is   n + n-1, the 

value in the recursive reference is n-2)

Thus when we expand this all the way, we get

Once again we need to work out how many 's are in this sum, and now we also have to 

work out the value of the expression that is multiplied by .

The number of 's is easy: as with our previous recurrence relation, the number of 's added

to the number in the  recursive reference, is always n

The value of the expression that is multiplied by  is a little harder to calculate, but we can 

do it.   The sum  n + n-1 + n-2 + ..... + 1

works out to    

(If this is not already familiar, it is not hard to prove in a variety of ways – induction is 

particularly easy in this case.)

Now we can replace all the unknowns in our formula for 



Simplifying this is easy, applying our standard Big O analysis is even easier, and we end up 

with 

 is in 

Now we have another standard pattern to add to our collection of recurrence relations:

Recurrence Relation Big O Complexity

O(n)

O( )

Now consider the recursive binary search algorithm - it is well known so I won't repeat it 

here.

The recurrence relation for binary search is 

    for n > 1

Note that the base case here is for n = 1 instead of 0 as in the previous problems.  It turns out 

this makes no difference at all.  The base case can actually use any specific value without 

changing the final complexity analysis.

DON'T JUST TAKE MY WORD FOR IT.  MAKE SURE YOU SEE WHY THIS IS TRUE.



Applying our now standard expansion technique, we get

and if we expand this fully we get

and as always, the question is "how many 's are there"?  

Also, you may be saying that this expansion can't be correct because most of the time n won't 

divide evenly by 2, 4, 8 etc.  Well, you are right, but it turns out this doesn’t matter.  If you do 

the recurrence relation with all of the precise details, accounting for odd and even values of 

n ... you get exactly the same result as we will get by assuming that all the divisions work 

exactly.  So I'm taking the easy route and ignoring those details.

So, back to the question of counting the 's.  Here we need a bit of clever insight.  When the 

denominator inside the  recursive reference is 2, there is 1 .  When the denominator is

4, there are 2 's.  When the denominator is 8, there are 3 's ..... not much of a pattern unless

you notice that , , and  .... the number of c_2's is equal to the exponent 

when the denominator is written as a power of 2.

So when we write

we need to ask what is the denominator in the  recursive reference.   

In other words, what is x, when    1 ?

This is the same as solving for x in , and the solution is simply            (the log

is to the base 2, but we don't have to worry about that detail either)



Thus the number of 's is , and we get

This doesn't look like the type of function we are used to dealing with in our Big-O 

complexity analysis, but we can handle it exactly the same way.  Log n is just a function of n, 

and it comfortably fills the role of g(n) in the definition of Big-O complexity.

So we conclude that T(n) is in O(log n) .... and now we have another pattern to add to our 

table.

Recurrence Relation Big O Complexity

O(n)

O( )

O(log n)

One more recursive function pattern.  This one corresponds to many algorithms, including 

mergesort which we will look at next day.  For now, we will just look at the recurrence 

relation.



We expand this in the usual way

Expand again ...

… and again until the final expansion will give us

Now we have to solve

            (1+2+4+...)

    and   (n+....+n)

    and    x

Inspection shows us that at every stage of the expansion, the term inside the  recursive 

reference is of the form , and the coefficient of  is also .  As before, we see that 



when the term inside  is 1, we must have  , which gives us , which gives 

us  

We also see that the number of n's that are multiplied by  is the same , so in the final 

expansion the number of n's is 

This gives

That just leaves the (1+2+4+...).  These are powers of 2, and the last one is always 1/2 the 

coefficient of the    recursive reference.  So when we get to the end of the expansion, we

have

(1 + 2 + 4 + .... +   )

This is another sum for which we have a simple formula:     

Putting this in the equation, and replacing  with  , we finally get

In this function, the  term grows the fastest (its growth rate lies between n and ), 

so our standard Big-O analysis gives

 is in O( )



And now we can add the final row to our table of patterns

Recurrence Relation Big O Complexity

O(n)

O( )

O(log n)

O(n*log n)

There are infinitely many possible recurrence relations, but these four will cover the vast 

majority of recursive functions that you will encounter in the real world.  You should be able 

to analyse a recursive function and derive its recurrence relation.  If the recurrence relation is 

one of these four you should be able to state the Big O complexity.  


