
20190913

Divide and Conquer Algorithms

The Divide and Conquer Paradigm

To solve a problem of size n:

        If n is "small":

             solve the problem directly

        else:

            Subdivide the problem into two or more (usually disjoint) subproblems

            Solve each of the subproblems recursively

            Combine the subproblem solutions to get the solution to the original 

problem

Examples of D&C algorithms are familiar to everyone who has studied 

computing:  binary search, Quicksort, and MergeSort are classic examples.

Today we looked at MergeSort as an example of both the D&C paradigm, and also an 

example of the last of the four types of recursive algorithm we looked at yesterday.

To set the stage:  putting a set of objects in order may seem like a pedestrian task, but it is 

profoundly useful – as we will see, there are many problems that are superficially unrelated 

to putting things in order, but for which a preliminary stage of sorting the data can greatly 

accelerate the algorithm that actually solves the desired problem.

The problem of sorting a set is also of great theoretical interest.  It was one of the first 

problems for which it was possible to prove a non-trivial lower bound on the computational 

complexity.  Here’s that result in a nutshell:  consider the range of all possible sorting 

algorithms that are based on comparing elements of the set being sorted.  As you might 

imagine, there are infinitely many such algorithms (really?  Yes, we can prove that!) and 

humans have only examined a very small number of them.  But we can prove that there 

cannot exist a comparison-based sorting algorithm that belongs to any complexity class lower

than O(n*log n).



But naïve sorting algorithms (such as SelectionSort, outlined just below) run in O( ) time.

SelectionSort(A):
# A is an array containing n elements.  I don’t like 0-based addressing so I
# am going to assume that the first element is A[1] and the last is A[n]
for i = n down to 1:

find the largest value in the data range A[1] to A[i]
Let A[p] be the largest value found
Swap A[p] and A[i]

There is an implicit loop in the line “find the largest value ...” since we do that by looking at 

each value in that range.  We look at n elements, then n-1, then n-2 etc.  so the total number of 

times we look at a data element is   which is 

clearly in O( )

So the question facing algorithm designers was this: “We know we can’t find a sorting 

algorithm that runs in better than O( ), but the sorting algorithms we have exhibit 

running time in O( ).  Can we close the gap between the lower bound and the actual 

running time?”

(Actually, MergeSort has been known for ages – nobody even knows who first came up with 

the algorithm.  So MergeSort probably predates the whole study of computational complexity

and it is misleading of me to suggest that it was discovered as part of a quest to answer the 

question just posed.   In fact, the chronological sequence was more like “MergeSort runs in      

O( ) time – can we do better?”  “Oh, O( ) is a lower bound on all 

comparison-based sorting algorithms.  MergeSort has optimal complexity.”  However, this 

type of question is unresolved regarding other problems and represents a core theme in the 

study of algorithms.  This seemed like a good time to introduce it.)



But how do we know MergeSort has complexity in O(n*\log n)?

Here’s the algorithm in very high-level pseudo-code.

MergeSort(A):
# A is an array as specified above for SelectionSort
if  A has <= 5 elements: # see the note below regarding the magic number 5

sort A using any method
else:

MergeSort(left half of A)
MergeSort(right half of A)
merge the two sorted halves together into a full sorted set

When A is small (in the code above, I have used 5 as the cut-off point for “small”) we can use 

any sorting algorithm we like, even a relatively slow one like SelectionSort.  This is ok 

because with <= 5 elements, the time required for the sorting process is bounded above by the

time it takes to sort exactly 5 elements – which is constant.  Does the cut-off point have to be 

5?  Absolutely not.  You could make it 1 … or 1000 … without changing the complexity of the 

algorithm.  If you are doing a production-quality implementation of MergeSort you will need 

to determine the best value here.  With a very low value you can incur extra time through 

many nested recursive calls, whereas with a very high value the large subsets being sorted by 

SelectionSort may overwhelm the savings accomplished by the divide and conquer approach.

Now what about the final line “merge the two sorted halves together”?

We want to find the smallest value and put it into the first position in A.   After the Left Half 

and the Right Half are sorted, the smallest value over all must either be the first one in the 

Left Half or the first one in the Right Half.  We just compare these two and pick the smaller.

Now we need to find the next smallest.  Again it is either the smallest remaining value in the 

Left Half or the smallest remaining value in the Right Half.

We always need exactly one comparison to find the next value we need to build the sorted 

version of A.   Since A has n elements, the merge phase is in O(n)

So the recurrence relation is this:



And Lo and Behold … this is exactly the fourth recurrence relation we looked at … so we 

know without any further effort that the running time of MergeSort is in O( )

A question was asked in class regarding dividing A into more than two parts to reduce the 

actual (real world) running time.  For example we could divide A into Left Third, Middle 

Third and Right Third.  We would sort each third independently and then merge them back 

together.   Choosing the correct value at each stage of the merge would require two 

comparisons (in class I mistakenly said “three comparisons”) so the merging would be 

slower.  However the number of recursive calls would be reduced because we approach the 

cut-off point for ending the recursion faster.  The recursive part of the recurrence relation 

would look like this:

T

which still works out to be in O( )  so it is in the same complexity class as the original

MergeSort.

The actual coefficients in the “split in half” and “split in thirds”   (and by extension, the “split 

in quarters”, “split in eighteenths”, “split in ninety-ninths” etc) will all be different, but every 

one of these variations is in O( ).   To determine if “split in thirds” is actually faster or

slower than “split in half” would require careful operation counting and some amount of 

experimentation.


