
20190920

Subset Sum

Later in the course we will look at a class of problems that are generally

considered to be extremely difficult to solve. Today we will examine one of

those problems.

The Subset Sum problem: Given a set S of n integers and a target value k, does

S have a subset that sums to k?

S is not necessarily a set in the pure mathematical sense: S is allowed to contain

duplicates, whereas in a formally defined mathematical set all the elements

must be distinct.

S is an example of what we call a decision problem: The answer for any instance

is either “Yes” or “No”.

For example, let S = {1,1,3,45,61,10000093} and let k = 47. The answer is Yes

because 1+1+45 = 47

Computer scientists believe that Subset Sum is so difficult that it is impossible

to create an algorithm to solve it that runs in O() time, for any value of t. Note

that such an algorithm would have to solve all instances of the problem. It is

easy to come up with fast algorithms that solve some instances of the problem.

However, we can certainly come up with a slow algorithm that does solve

Subset Sum: the BFI algorithm simply examines every subset of S to see if any of

them sums to the target value k. Since S has subsets, this algorithm runs in

O() time. (You may wonder why I don't include a time factor for computing

the sum of each subset - in fact, the sum of each subset can be computed in

constant time. Exercise: see if you can see how to do this.)

The reason for bringing up this problem now is to examine whether we can use

D&C to improve on the BFI algorithm.

To see how, we first need to consider a much simpler problem.

Pair-Sum: Given a set S of n integers and a target integer k, does S contain a pair

of values that sum to k?

Pair-Sum is obviously solvable in polynomial time: we can simply compute the

sum of each pair of values in S, of which there are

which is in

But a better algorithm for Pair-Sum is to start by sorting S, then work through

the sorted list from both ends, eliminating values when we determine they

cannot be in a pair that sums to k.

Suppose the sorted set looks like this (drawn as if it is stored in an array)

We start by computing . There are three possibilities:

 : in this case we can stop … we have found a pair that sums to k.

 : in this case we know cannot be in a solution – adding together

with any other element of S will give a total < k.

 : in this case we know cannot be in a solution – adding together

with any other element of S will give a total > k

Thus after one addition, we either stop with a solution or we eliminate either the

smallest or the largest element of the set. We can now continue in exactly the

same way on the remaining n-1 elements.

In pseudo-code, the algorithm looks like this:

Given S and k:
Sort S # S is indexed from 1 to n because I don’t like

0-based addressing
Sorting takes O(n*log n) time

left = 1
right = n
while left < right:

t = S[left] + S[right]
if t == k: Report “Yes” and exit
elsif t < k: left++
else: right--

Report “No” and exit

The loop executes < n times and each iteration takes constant time, so the

algorithm runs in O() + O() time, which simplifies to O()

So we have reduced the O() time of the naïve algorithm to O() for this

clever algorithm. It may not seem like much but for large values of n this is a

huge improvement.

The earliest reference I have found for this trick is in a textbook by Horowitz

and Sahni. They don’t claim it as original but they don’t give a source.

This is as far as we got on this problem on Friday – we will finish it on Tuesday.

