
20190924

Subset Sum Problem continued ...

We have seen how to solve the Pair-Sum problem efficiently, but we still haven’t

seen how to improve the algorithm for the general subset sum problem! Bear

with me for one more preliminary problem.

2-Set Pair-Sum: Given sets X and Y with n elements in each set, and a target

integer k, is there an and a such that x + y = k?

It should be clear that we can solve 2-Set Pair-Sum in O(n log n) time. We sort

both sets, then start by letting . As before, if we are done, if

 we can eliminate , and if we can eliminate

At last we are ready to attack Subset Sum in all its glory. This very clever

method was first described by Horowitz and Sahni.

Given set S and target integer k:

Split S arbitrarily into two equal sized subsets and .
 #If S has an odd number of elements, make the split as even as possible.
 #It doesn't matter which of or is bigger in this case.

If S does have a subset T that sums to k, there are three possibilities:
- all the elements of T are in
- all the elements of T are in
- some elements of T are in and some are in

Compute the sums of all subsets of . Let this set of sums be
Compute the sums of all subsets of . Let this set of sums be

if k or k :
report "Yes" and stop # this takes care of the first two

possibilities
else:

we need to determine if there is a subset of that
can be combined with a subset of to give a sum of k.
This is equivalent to asking if there is an and
and a such that … it is an instance of
the 2-Set Pair-Sum problem

 Sort into ascending order
- label the elements ...

 Sort into ascending order
- label the elements

 Let left = 1 and let right = length()
 while left length() and right 1:

t = [left] + [right]
if t == k:

report "Yes" and exit
elsif t < k:

 # this means that [left] is too small to be in any
solution to the problem
left++

else:
 # this means that [right] is too big to be in any

solution
right--

report "No"

You should convince yourself that this algorithm correctly solves Subset Sum in

all cases. We now determine its complexity.

Computing the sets and takes time since each of and has

elements. and each have elements. Sorting each of and takes

 time, which simplifies to . The loop iterates at

most times, doing constant-time work on each iteration.

Thus the dominant step is the sorting of and , and the entire algorithm

runs in time.

This is still exponential (some call it sub-exponential because the exponent is <

n) but it is way better than the BFI algorithm. This table shows the first few

values in the comparison (with n even, to make it easy on my brain).

2 4 4

4 16 16

6 48 64

8 128 256

10 320 1024

12 768 4096

What made this work? It was the result of splitting S into and , thereby

reducing the number of subsets we had to sum from to … and then

using the 2-Set Pair-Sum algorithm to eliminate combinations.

Some very interesting questions came up in class and after class:

Can we improve the efficiency even more by splitting S into a larger group

of smaller sets – such as each of size ? This sounds good – the

number of subsets we actually look at is reduced to . But now we have to

consider combining subsets from every combination of (for

example, we need to check all sums containing one value from , one value

from and one from , and all sums containing one value from and one

value from , etc.) This balances out the time we saved by making the sets

smaller.

Can we improve the efficiency even more by using the same technique

recursively to see if or contains a subset that sums to k? Yes we can, but

these are not the time-critical steps of the algorithm. The step that looks for a

solution involving part of and part of will still have the same complexity.

Can we improve the efficiency even more by not only computing the sum

of the smallest value in and the largest value in , but also computing the

sum of the largest value in and the smallest value in ? Yes, this lets us

eliminate two values on each iteration, which cuts the maximum number of

iterations by a factor of 2. However we do twice as much work in each iteration

so it balances out.

Does that mean that this algorithm cannot be improved? Not at all!!! This is just

the best algorithm I know of for this problem – you could be the person who

discovers a better one.

(If you enjoy working on this kind of problem, here is a good one: “Powers of

2” Subset Sum. Given a collection of integers S, in which each element is a

power of 2 (repetitions allowed), and an integer k, does S have a subset that

sums to k? For example, . For this

instance the answer is “Yes” because . The question

is: can you find a polynomial time algorithm for this problem?)

The last few minutes of class were spent looking very briefly at one more quite

clever application of the Divide and Conquer method.

Efficient computation of :

Let x be any number and let n be any positive integer. The naïve method for

computing would be something like this:

def power(x,n):
result = x
for i = 2 to n:

result = result * x
return result

This uses n-1 multiplications. We can do better by observing the following

equalities

 when n is even

 when n is odd

This is clearly a D&C approach, and it is very efficient because the two

subproblems at each level are identical! We only have to solve each of them

once.

An example will make everything clear. Suppose we want to compute

This uses a total of 7 multiplications instead of the 36 needed by the naïve

algorithm. It’s pretty easy to see that this algorithm has recurrence relation

T() = when n = 1

T() = T + when n > 1

As usual, for simplicity we assume is always an integer – if this is not true, the

value of just gets rounded down.

In fact it is the same recurrence relation as we saw for binary search, and it has

the same complexity: O()

I offered one last observation about this process, without proof or explanation:

The binary version of 37 is 100101 (32+4+1). If we look at the lines of the

solution we see that some of them just square the value from the line below, and

others square the value from the line below and multiply by x. We can include

the bottom line in the second category because it “introduces an x”. Designate

the “just square” lines as “0” lines, and the “square and multiply by x” lines as

“1” lines. Now we can give a short-hand notation for the computation of x^37

as

 : 1 line

0 line

1 line

0 line

0 line

1 line

We know the last line is and we can work upwards to reconstruct all the

other lines – so we can represent the entire bottom to top process as 100101

But look! 100101 is exactly the binary representation of 37

And it turns out that this always works (proving this is a nice exercise). So if we

want to compute , we just take the binary representation of 109 … which is

1101101 … and our computation looks like

1:

1:

0:

1:

1:

0:

1:

Test 1 will cover everything up to this point.

