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Knapsack Problems

The 0/1-Knapsack Problem is defined as follows:  given a container of capacity k (we will 

assume k is a limit on the total mass that can be placed in the container – but it could just as 

easily be a measure of volume) and a set A of items { }, each of which has mass  

and value , we call a subset   feasible if   .  Our goal is to find a feasible 

subset S* that maximizes    .  In other words, we want to find the most valuable 

combination of items that will fit in the container.

This is a profoundly practical question – NASA has to solve it every time they put together a 

load of supplies and equipment for launch to the ISS.  Not only that but every one of us solves

something similar on a daily basis.  Given that there are only 24 hours in the day and a huge 

collection of activities competing for our time (each activity requiring a certain number of 

hours for completion), we decide on a subset of activities to fill our day.  The question is, of 

course, how do we decide on the values?  I suspect that the better we are at solving this 

problem – consciously or subconsciously – the better we feel at the end of each day.

The bad news is that almost all computer scientists are convinced there is no polynomial-time

algorithm to solve the 0/1-Knapsack Problem ... which means in practical terms that we will 

never find a Greedy Algorithm that is guaranteed to find the optimal solution to all instances 

of this problem.  

So what is this uber-difficult problem doing in our discussion of Greedy Algorithms, except 

making us feel depressed about the complexities of daily life?  Well, as with a lot of difficult 

problems, if we modify the problem we can find a version that is solvable.

Here we’re going to do something a bit counter-intuitive.  We are going to change the 

problem so that the set of feasible solutions becomes infinitely large ... surprisingly, this 

makes finding an optimal solution easy!



Greedy Algorithm for Fractional Knapsack Problem

The Fractional Knapsack Problem is defined as follows:  given a container of capacity k  and a

set A of items { }, each of which has mass  and value , find the most valuable 

combination of objects that will fit in the container, allowing fractions of objects to be used, 

where the value of a fraction of an object is the same fraction of the value of the object.

More formally:   Given k and a set of n pairs of the form (  )  find a set of values 

{ } such that    and        and    is maximized

In this formulation, the   values are the fractions.

Our goal is to find a greedy algorithm to solve this problem.  As with all greedy algorithms, 

our first task is to sort the objects.  We can experiment with a variety of sorting criteria but the

one that leads to success in this case is to sort the objects in decreasing      order.

Greedy FKS:

Sort the objects  in decreasing      order

While k > 0 and there are still objects to consider:
Take as much of the next item as possible
Reduce k by the mass amount just added to the knapsack

That’s about as simple as an algorithm can get, and it clearly runs in O(n log n) time  (the sort 

is the longest part of the algorithm).



Proof of Correctness:

In class I gave a simple outline of the standard proof by induction, the details of which are so 

similar to the previous algorithms that there is little point reproducing it here.

Instead, we will look at a different method for proving correctness of Greedy Algorithms: a 

technique we can call “eliminate the differences”.

WLOG we will assume that object  has the highest   ratio, object  has the second 

highest, etc. ... in other words, we have performed the sort and renumbered the objects.

Let  be the algorithm’s solution, and let O be an optimal solution.  If  and O are 

identical, then  is optimal.

Suppose  and O are not identical.  In fact, suppose they differ on the very first object.  Since

the algorithm takes as much of this object as possible, it must be the case that  contains 

more of  than O does.  That means O contains some other objects in at least the same 

amount as the amount of  that O leaves out.  But since  is  all the other  ratios, we 

can replace some of the “other stuff” in O with the left-out , and the total value cannot 

decrease.   Call this new optimal solution O’ and note that  and O’ contain exactly the 

same amount of .  This means that  and O’ have one fewer difference than  and O did.

We can continue eliminating differences in this way until we reach a point where  =   

(we don’t know how many differences there were to start with, so I used “...” for the 

superscript after they have all been eliminated).  We know there can’t be more than n 

differences because there are only n objects.  Since every time we eliminate a difference we get

a new optimal solution, we eventually show that  is identical to an optimal solution ... so

 is optimal.

As always, remember that every time we say “Let O be an optimal solution” we are not 

saying “Suppose we have found an optimal solution O”.   The “Let O be an optimal solution” 

is part of the argument we use to prove the optimality of .  At no point does the algorithm 

try to transform one solution into another.



Example of the algorithm in action:

k = 15

15 14 30 100 2 100000

6 7 20 80 2 100001

2.5 2 1.5 1.25 1

Ooooh, look at that last object – it’s worth 1000000 !  Surely we should take 15 units of that!  

Well no, it’s easy to see that if we take any of that object we could improve our value by 

removing that and replacing it with any of the other objects – because it has the lowest value 

per mass unit ratio.

The algorithm takes all of , all of , and 2 of the available 20 units of    with a total value 

of  = 32

By the proof given above, there is no solution with a value > 32


