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Huffman Coding

The challenge: take a document consisting of a sequence of ASCII characters 

(such as the text on this page) and reduce the number of bits needed to store the 

information – while maintaining full recoverability.  This is a vital problem in 

communications: compressing a document reduces the time required to 

transmit it.

More generally, we can consider a string S of characters based on any specific 

alphabet A, in which the characters in the string are represented by sequences of

bits.  Again, the challenge is to represent the information in S as compactly as 

possible without losing any of it.

We say that a “code” is an assignment of particular bit sequences to the 

characters in A, and an “encoding” of S is the process of representing S by the 

concatenated bit sequences for the characters in S.  

Thus if S = “catattaca” and the code assigns “101” to “c”, “000” to “a”  and “011”

to “t”   then S is encoded as “101000011000011011000101000”.  Note that this 

encoding is certainly not optimal.  Since there are only three different characters 

we can use 2-bit sequences without any ambiguity.  So we could use “10” for 

“c”, “00” for “a” and “01” for “t”   (or any other trio of 2-bit sequences) and the 

encoding would be “100001000101001000”



Encoding is a problem that humans have been dealing with for millennia.  The 

ancient Sumerians developed cuneiform writing as a way of recording detailed 

information with triangular marks on clay tablets – not quite bits, but a step in 

the right direction.  The original Hebrew alphabet contained only consonants; 

vowels were not recorded, which reduced the amount of writing required.  (I’m 

not claiming this was the reason behind not recording vowels, but it was 

certainly a side-effect.)  In more recent times, secretaries were trained in various 

forms of “shorthand” for making accurate real-time transcriptions of meetings.  

In 1948 Claude Shannon (an eccentric genius who invented – among other 

things – a motorized pogo stick) initiated the study of information theory with a

paper titled “A Mathematical Theory of Communication”.  One of the first goals 

was to explore the limits of data compression.  In 1952 an MIT student named 

David Huffman published a paper titled “A Method for the Construction of 

Minimum-Redundancy Codes” in which he gave an algorithm for creating 

optimal solutions for a particular class of coding methods.

Huffman Coding was (and is) such a powerful method for data compression 

that if you dig down into modern data compression formats such as zip, jpg and

mp3 you will find elements of Huffman Coding behind them.

In ASCII, Unicode, (and for the historians among us, the archaic EBCDIC) each 

bit sequence assigned to a character has exactly the same length – for example 

all ASCII code sequences are 8 bits long.  For example the ASCII code for “A” is 

“01000001”.  If we are using fixed-length bit sequences for characters, all codes 

are equivalent: if we are using bit sequences of length k and our string S has 

length n, then it will take exactly k*n bits to encode S.

But what if we use different-length bit sequences?  If we assign short bit 

sequences to some characters and longer bit sequences to other characters, can 

we get an overall reduction in the encoding?   



Most people have heard of Morse Code, even though relatively few people use 

it any more.  (An interesting side note: the Titanic was not the first ship to use 

“SOS” as a distress call – the first known use was by the SS Slavonia, 

approximately three years before the Titanic went down.)  Here’s what the code 

looks like:

You can see that Morse Code uses the idea just mentioned, and it does so in a 

sensible way.  Letters that are very common are assigned short codes (E and T 

have one-symbol codes,  A, I, M and N get two-symbol codes) and longer codes 

are used for less common letters.   In retrospect some of the choices are 

surprising.  For example H is a much more common letter than M, and yet it has

a longer code-sequence.  

But there’s a problem with this.  If you were receiving a message in Morse Code 

and it started dot-dot-dot-dot, you could be excused some confusion.  Did you 

just receive “EEEE” or “II” or “H” or “ES” or “SE” etc?  Morse solved this by 

introducing a third “symbol” : a pause.  Thus “ES” would be transmitted as 

“dot-pause-dot-dot-dot” and “SE” would be transmitted as “dot-dot-dot-pause-

dot”.  Morse used longer pauses to mark the end of words.



Unfortunately this technique is not available to us, since we are limited to just 0 

and 1 for our bits – there is no third symbol.  Huffman coding takes a different 

approach to avoiding ambiguity.

The Prefix Property:  We say that a code satisfies the Prefix Property if none of 

the assigned bit sequences occurs as a prefix of any other assigned bit sequence. 

We call such a code a prefix code.

(Morse Code fails on this because – for example – the code for “I” is a prefix of 

the code for “H”.)

When a code satisfies the prefix property we can decode without any ambiguity 

at all.  As soon as we identify a bit sequence that has been assigned to a 

character, we know that is the correct character and we can start to decode the 

next character.

Let’s look at S = “catattaca” again.   Suppose we use the bit sequence “0” for “c”, 

“10” for “a” and “11” for “t”.  This code satisfies the prefix property.  The 

encoding of S is “0101110111110010”.

We can visualize the code as a binary tree:



and this demonstrates an important idea: every prefix code can be represented 

as a binary tree in which the leaves correspond to the characters in the alphabet.

Decoding becomes a matter of starting at the root of the tree and following the 

branches dictated by the bits as we see them in the encoded string.  When we 

reach a leaf we record the decoded letter and return to the top of the tree to 

continue.

As an exercise, decode at least the first few characters of the encoded string 

given above.

Huffman’s brilliant idea is actually very simple: build the code by building the 

binary tree from the bottom up.  Start with the two least-frequent letters, give 

them a shared parent (which assigns a “0” to the bit sequence for one of them 

and “1” to the other), and then treat that parent as a single character that 

combines the frequencies of the two characters just combined.   Repeating this 

process until all the characters have been added to the tree gives the Huffman 

Code.

Example.   Suppose S contains the characters A, B, C, D, E, F with frequencies 7, 

16, 9, 8, 8, 11 respectively.  The tree would be constructed in stages, as shown 

here:







and now we extract the bit sequences from the top down:

A: 100

B: 01

C: 001

D: 000

E: 101 

F: 11

With these bit sequences and the known frequencies of the characters in S, we 

can compute the total length of the encoded string:

7 A’s  with 3 bits each :  21 bits

16 B’s with 2 bits each :  32 bits

9 C’s with 3 bits each :  27 bits

8 D’s with 3 bits each : 24 bits

8 E’s with 3 bits each : 24 bits

11 F’s with 2 bits each : 22 bits

for a total of 150 bits.    We can compare this to the ASCII encoding – each of the 

59 characters would require 8 bits, for a total of 472 bits.



It’s reasonable to observe that with only 6 characters to encode, the full 8-bit 

allocation of the ASCII code is excessive.  If we wanted to create a fixed-length 

code for just 6 characters, we really only need 3-bit sequences.  For example we 

could use

A: 000

B: 001

C: 010

D: 011

E: 100 

F: 101

This code would use 59*3 = 177 bits.  The Huffman’s Code compression – 

reducing the number of bits to just 150 – is still better.   What Huffman proved 

was that his coding scheme is optimal among all prefix code.  In other words, 

there is no prefix code that uses a smaller total number of bits than the Huffman 

Code.

The proof is a bit messy but not too hard.  In structure it is very similar to the 

other Greedy proofs we have seen.  It starts by showing that in any optimal 

solution, the two characters with the lowest frequencies should be at the lowest 

level of the binary tree that represents the code.  Since this is where the Huffman

algorithm puts them, we can see that the algorithm’s first action is correct.  This 

reduces the problem to a smaller problem (with those two characters combined 

into a single meta-character).  We make an inductive assumption that the 

algorithm finds an optimal solution on the reduced set.  Then we show we can 

patch the first step together with the optimal solution on the reduced set to get 

an optimal solution, which is exactly what the algorithm does.


