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Subset Sum – Again?

We have looked at Subset Sum in some depth.  Here’s the problem definition again:

Given a set of n positive integers   and a target integer k, is there a 

subset of S that sums to exactly k?

Clearly for any set S and any target k, the answer is either Yes or No.   I have previously 

claimed that this is one of the most difficult problems there is, in terms of the computational 

complexity of algorithms that we can use to solve it.   We have seen that the BFI algorithm 

runs in O( ), while the Horowitz-Sahni algorithm runs in O( )

Now let’s solve it using Dynamic Programming.

Suppose the answer for set S and target k is “Yes”  (to be consistent with the way we 

developed this in class, I will use “True” or just “T” for situations where the answer is “Yes”)

Then the last element of S ( ) is either in the desired subset ... or it isn’t.

If  is in the solution, then the rest of the solution must be selected from  with 

the target value reduced to 

If  is not in the solution, then the solution must be selected from  with the 

target value remaining at k

If the answer is True, one of these two situations must be True.

Following the now familiar dynamic programming reasoning, we don’t know which of these 

two subproblems applies so we evaluate both of them.



We can write  to represent the original problem: we are looking for a subset of

 that sums to k.

This lets us write 

 = True if and only if   = True 

or

  = True

Consider the first of these reduced problems.  Let  .  We can write

 = True if and only if   = True 

or 

         = True

and we can see that this relationship just cascades down through the subsets.  When we 

notice that the subsets we are working with all start with , we can simplify the notation 

even further:   we can use SS(i,x) to represent the problem instance (S[1..i],x)  ... ie, “Does

 have a subset that sums to x?

It may seem that by focusing on subsets that all start with  we are severely limiting the 

number of subsets we will consider – but remember we are considering subsets of these 

subsets.  If there is a solution we will find it.

At this point we have done most of the work of creating our recurrence relation:

 = True if and only if  = True   or   = True

We just need some base cases.  Consider the problems of the form SS(1,x).   Basically this 

problem is asking “Does { } contain a subset that sums to x?   Clearly the answer is Yes 

(True) only if x == 0  or  x =    ... so these problems are base cases (ie. we can determine the 

answer without further recursion).  



There are some other situations where we can immediately determine whether the answer is 

True or False:

SS(i,0)  = True    i ... because the empty set sums to 0 and it is a subset of everything.

If x < 0, SS(i,x) = False (we assume all integers in S are positive)

If  = x, then SS(i,x) = True

We can use these as base cases as well, if needed.

Now we can decide how to store the results to the reduced problems we will solve. 

Fortunately the recurrence relation basically tells us what to do.  Since each subproblem is 

identified by two parameters i and x, we can use a 2-dimensional table with the possible 

values of i on one axis (I’ll use the vertical) and the possible values of x on the other 

(horizontal).  

The possible values of i are 1, 2, ..., n.   I’ll show the value of  on the line for i.

The possible values of x ... well, we don’t know which subproblems are going to be important.

Hey, it’s DP, we will do them all!  We can work out SS(i,x) for all values of x from 1 to k.

Let’s do an example:   

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 T F F F F F F F F F F F F F F F F F

4

7

12

13

23

I have filled in the first row – these are some of the base cases we identified above.

Consider the next row.  The first cell represents the problem SS(2,1), ie “Does { } contain 

a subset that sums to 1.  Our recurrence tells us the answer is True iff either SS(1,1) 

or SS(1,-3) is True.  SS(1,1) IS True, so we get T for SS(2,1).  In general we will see that T values

always propagate vertically through the table.



You can work out that SS(2,2), AND SS(2,3) are F and SS(2,4) is T.  But when we get to SS(2,5), 

things get a bit more interesting.  SS(2,5)  is  True iff either of SS(1,5) is True (it’s not) OR 

SS(1,1) is True (it is!)  Make sure you see what’s going on here: we subtracted  from 5 to get 

the reduced target value.

That’s it for exciting stuff on the second row.  You can work out that all the remaining values 

are F.  Now we have:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 T F F F F F F F F F F F F F F F F F

4 T F F T T F F F F F F F F F F F F F

7

12

13

23

Now I’ll fill in the rest of the table.  You should make sure you see why T’s start to appear.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 T F F F F F F F F F F F F F F F F F

4 T F F T T F F F F F F F F F F F F F

7 T F F T T F T T F F T T F F F F F F

12 T F F T T F T T F F T T T F F T T F

13 T F F T T F T T F F T T T T F T T T

23 T F F T T F T T F F T T T T F T T T

So the table tells us the answer to SS(6,18) is Yes ... but what is the subset that adds to 18?  We 

start in the bottom right corner and trace our way back through the T values.  Any time the T 

we are on has another T right above it, we don’t need the  that corresponds to this row.  If 

the T we are on has F right above it, we jump back to the “reduced target” (ie   ) in the 

previous row.  This tells us the current  is part of the solution.

Repeating this step until we have identified the elements in the solution, we find that the 

subset that sums to 18 is {1,4,13} 



Note that each value in the table is either a base case that we can fill in immediately, or it is 

the result of looking at one or two values in the previous row.  This means each value in the 

table is computed in constant time.

This gives us a concise and efficient-looking algorithm that will always correctly solve Subset 

Sum ... which seems to contradict our earlier assertion that there are no fast algorithms for 

this problem.  What’s going on?

The table we build in this algorithm has size n*k, so the algorithm runs in O(n*k) time.  The 

problem is the target figure k.   There’s no upper limit on it.   

Remember that our measure of complexity expresses the running time of the algorithm in 

terms of the size of the input.  For Subset Sum, the size of the input is n+1  (the set, and k).  

But if k happens to be  then the running time of the algorithm is in O( )

So the worst-case running time of this algorithm is exponential and it’s consistent with the 

claim that there are no fast algorithms for solving Subset Sum.  But the good news is that if 

we know that k is “not too big” (for example k  ) then this algorithm is an excellent 

solution to the Subset Sum problem.



We concluded our introduction to Dynamic Programming by looking at a very easy problem:

Given an n*m grid of squares (like a chess-board that isn’t required to be square) in which 

each square contains an integer representing a cost, find the least-cost path from the top to the

bottom of the grid, subject to the constraint that from square (i,j)  we can only move down 

and to the left to square (i+1, j-1), straight down to square (i+1, j), or down and to the right to 

square (i+1, j+1).  This figure shows the moves available from one of the squares.

It’s not hard to see that a Greedy Algorithm won’t work here.  The next figure shows an 

instance of the problem where the optimal solution (shown with stars) doesn’t start on the 

least cost square in the top row, and at each step except the last one, doesn’t use the least cost 

successor of the current square..



A student suggested using Dijkstra’s algorithm to solve this problem.  We could do that by 

attaching an extra square at the top, connected to all the squares in the top row, and similarly 

attaching an extra square at the bottom.  This would certainly work.   The DP solution might 

do less work because it just iterates through all the squares, solving each subproblem in 

constant time, as opposed to solving fewer subproblems but taking O(log n) to choose which 

one to solve on each iteration.  

As an exercise you should work out the recurrence relation for this algorithm, expressing the 

cost of reaching square (i,j) as a function of reaching the squares that have (i,j) as a successor.  

Make sure you consider the special cases for the squares on the left and right sides of the 

board, which have only 2 predecessors each.  The total (or aggregate) cost to reach each 

square is computed in constant time.

If the board has dimension n*m, and we need only constant time to compute the aggregate 

cost of reaching each square, the algorithm runs in O(n*m) time (compare this to Dijkstra’s 

algorithm on a graph with n*m vertices).



The reason I introduced this simple problem is that it turns out to be immensely practical and 

useful.   In class I showed this video which shows a remarkable application of this DP 

algorithm:

https://www.youtube.com/watch?v=qadw0BRKeMk

This functionality has now been incorporated into Photoshop.

https://www.youtube.com/watch?v=qadw0BRKeMk
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