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Branch and Bound Continued

Let’s revisit the B&B algorithm:

• Characterize the solution as a series of decisions.  This can be as simple as iterating 

through the set of items, deciding to include or omit each one in turn.   We should 

specify the order in which the decisions will be made.

• Establish a Global Upper Bound on the cost of the optimal solution.  Call this   

• Create a set  of feasible partial solutions representing the possible outcomes of the 

first decision.  For each , determine the cost bracket   

• Execute the following:

while  is not empty:
Choose  such that  is the smallest in 
if  is a complete solution:

return      #  is an optimal solution
else:

delete  from 
for each new feasible partial or full solution  that can be constructed from 

 as a result of the next decision to be made:
compute 
if   :
  discard 
else:

if   :

add  to 

By this point the rationale for discarding partial solutions with   should be 

clear.  But we still need to think about how we can be sure that that solution we return is the 

optimal solution.  It is certainly true that there may still be a lot of unexplored partial 



solutions in  when we return.  How can we be sure that none of them can lead to a solution 

that is better than the one we choose?

The solution  that we return has two characteristics:

• its lower bound  is  all other lower bounds in  

• it is a complete solution

When we say  is a complete solution, we mean that  consists of a complete sequence of 

decisions – there is nothing more to be decided.  This means that we know exactly the cost of

.  In terms of our notation, it means  

But this means  

Which means that every extension of every partial solution still in  will cost at least as much

as  costs.   Therefore no solution can be better than .

Now we need to think about the implementation of the algorithm.  The computation of the 

lower and upper bounds depends on the particular problem being solved.  Our goal is get 

good bounds (ie bounds that are close together) without doing too much work.  It’s not 

uncommon to do O( ) work when computing bounds for a partial solution.

The one part of the algorithm we haven’t looked at carefully is :

Choose  such that  is the smallest in 

It’s deceptively simple-looking.  But we need to remember that we typically apply B&B to 

problems where the number of potential solutions is exponential.  This suggests that we may 

have O( ) partial solutions in  .  (Obviously we hope that our bounding operations allow 

us to keep  small, but we can’t be sure that they will.)   So how do we store  ?

Whatever structure we choose has to support two operations: we need to able to add new 

items to the set, and we need to be able to select and remove the item with the smallest  .  

You might be thinking that we also need to delete partial solutions when they become 

obsolete (ie when  drops below a partial solution Q’s   value).  We’ll come back to 

that.

One option is to store  in a list or array.  When we generate new partial solutions, we can 

just add them to the end – that takes constant time.  But then finding P with the smallest  



requires looking at everything in    ... which may be O( ) in size.  Many programming 

languages have built-in functions with names like “smallest” that will return the lowest value 

in a set, but this is what they are doing – just looking at the elements of the set one by one.  If 

we take this approach we are embedding a potentially O( ) operation in every iteration of 

the while loop.

What if we sort the array (or list) containing  ?  That would make the task of finding the P 

we want very simple – it’s the first one – we can find it in O(1) time.  But now we have to 

consider the problem of adding new partial solutions to  .  If they need to be inserted in the 

middle of the sorted list (or array) that requires O( ) operations.  If we add them at the end 

and then just re-sort the whole set, that takes O( ) operations.

It’s not looking good.  If only there were some data structure that lets us find the smallest 

value quickly, and add new values quickly.

The solution of course is to use a min-heap.  A min-heap keeps the smallest value at the top so

finding it is an O(1) operation.  When we remove the value from the top, fixing the heap 

(which some people seriously call “re-heapifying”) takes O( ) steps, where t is the number

of items in the heap.  Similarly, adding new items to the heap takes O( ) steps where t is 

the number of items in the heap.

And   !!!    (Not n-triple-factorial, just n-very-excited)   So now, even if   grows to 

have O( ) partial solutions, we can do all of our necessary operations on it in O(n) time.  

This is my favourite illustration of how choosing the right data-structure can have a massive 

effect on the efficiency of an algorithm.

Now what about the idea of removing partial solutions from  when we know they cannot 

lead to an optimal solution?  We can do that – we can traverse the heap either from the top 

down or the bottom up, removing any item that we don’t need, and all of its descendants too. 

The problem is that this can damage the heap structure – we would need to rebuild the heap 

from scratch, which takes O(t) where t is the number of elements in the set ... which can be   

O( ) as we know.    But if we just leave these obsolete partial solutions in the heap they don’t

really cause much trouble – remember we can do the operations we need in O(n) time even if 

the heap is really big.  On balance it seems better to leave the partial solutions with high   

values in the heap, even though they are no longer of any use to us.  The only exception is 

when memory space is limited.  In this situation it may be necessary to do some clean-up on 

the heap from time to time.
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