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One Last B&B Example – A Practical Application

Now that we have seen the “matrix reduction” idea, let’s consider a really difficult problem: 

the Traveling Salesperson Problem, or TSP.  In this problem we imagine a salesperson who 

has to choose a route that takes them around a cycle of n cities, visiting each city once and 

returning to where they started.  All the cities are connected by direct roads and all the roads 

have different costs.  The goal is to find the route with the smallest total cost.  A small 

example might look like this. The integers represent the cost of traveling from the “row” city 

to the “column” city:

Burgerburgh Pizzapolis Nachoville Timbitton

Burgerburgh 15 13 8

Pizzapolis 15 4 11

Nachoville 13 4 14

Timbitton 8 16 14

Note the  entries on the diagonal – this is just a simple way of making sure we never try to 

go from a city to itself.  Basically any solution that tries to do this ends up with an infinitely 

large cost so it is rejected immediately – we don’t need to code anything extra to handle this.

We can think of the row for Burgerburgh as representing the different costs of going from 

Burgerburgh to any of the other cities … and we can reduce the row by subtracting off the 

smallest of them.  Of course we do the same for all the rows.   Similarly we can think of the 

columns as representing the costs to arrive at the cities.   If any column is all > 0 after the rows

are reduced we can reduce that column as well.



The matrix reduces to :

Burgerburgh Pizzapolis Nachoville Timbitton

Burgerburgh 7 5 0

Pizzapolis 11 0 7

Nachoville 9 0 10

Timbitton 0 8 6

This gives us an extracted cost of 8+4+4+8 = 24

For our initial value of    we can use a Greedy Heuristic as we did before, but note that

the solution must be a tour of the cities.   Starting at Burgerburgh we can choose the 0-cost 

road to Timbitton, but we cannot follow that with the 0-cost road from Timbitton back to 

Burgerburgh because that takes us home too soon – we have to visit all the cities before we 

return.  So our Greedy choice now is the 6-cost road from Timbitton to Nachoville.  This has 

to be followed by the 0-cost road from Nachoville to Pizzapolis and finally the 11-cost road 

from Pizzapolis to Burgerburgh.  Our initial   value is 24+17 = 41  (the 24 comes from 

the extracted cost).

We’ll just explore the progress of the algorithm a bit.  Our first decision is where to go from 

Burgerburgh.  The first option is Pizzapolis, which costs 7 so our CSF is 24+7=31.  When we 

reduce the matrix to represent this selection, we 

• remove the row for Burgerburgh (we have decided how to leave this city)

• remove the column for Pizzapolis (we have decided how to arrive at this city)

• set the entry for  Pizzapolis   Burgerburgh to   because we cannot use this edge – it

would take us home too soon

This gives us 

Burgerburgh Nachoville Timbitton

Pizzapolis 0 7

Nachoville 9 10

Timbitton 0 6

And look!  The row for Nachoville has all values  so we can extract a cost of 9 – after 

which the column for Timbitton has all values   so we can extract a cost of 1.  We can add 



this total extracted cost of 10 to our   value for this partial solution.  We can use the Greedy 

Heuristic again to get a value for .

As we progress through the algorithm we lose rows and columns of the matrix, we set some 

values in the table to    and we reduce others to 0.  Eventually we  can reach a point in each 

partial solution where all the remaining costs are either   or 0.  At this point the partial 

solution becomes a full solution by choosing any feasible extension – there are no further 

costs.  Such a full solution is either discarded because its cost is too high, or becomes the 

current best solution.

The algorithm is guaranteed to find an optimal solution.  If we have done a good job of 

defining the lower and upper bounds, it will often find an optimal solution relatively quickly.

This is important because we absolutely do not have a polynomial-time algorithm for the TSP

problem.   There are some restricted cases where we can find the optimal solution easily, and 

some cases where we can get a good approximation to the optimal answer quite quickly, but 

the general TSP problem is one of the hardest problems we know of – which means that 

nobody realistically hopes that we will ever find a fast algorithm that solves it (at least not 

until quantum computing becomes a reality).  The best algorithm to find the optimal solution 

to a general case TSP problem is – you guessed it – Branch and Bound.


