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QUESTION 1 (15 Marks)

Let  be a problem in the NP class.  The details of  are unimportant

but you can assume that each instance of  consists of a set of  

integers, and another integer .

(Parts (a) through (e) are independent of each other.  Each part is 

worth 3 marks)

(a)Suppose we find an algorithm that solves  in   time.  

Does this give us any information about whether  is in P, or 

whether  is NP-Complete?  Explain.

Solution:  This gives us no information.  Problems in NP can all be 

answered in exponential time by examining all possible solutions.

(b)Suppose we are able to prove that every possible algorithm for

 requires at least    steps.  Does this give us any information 

about the classes P, NP, and NP-Complete?  Explain.

Solution:  This would prove that P != NP because now we know 

there is at least one problem in NP that is not in P.  It would prove 

that no NP-Complete problem can be solved in polynomial time 

(even if X itself is not NP-Complete).



(c) Suppose we are able to show that .  Does this 

give us any information about whether  is in P, or whether  

is NP-Complete?  Explain.

Solution:  This gives us no information.  We know X is in NP, and 

we know k-Clique is NP-Complete.  From these facts we already 

know that X    k-Clique

(d) Suppose we are able to show that  . Does this 

give us any information about whether  is in P, or whether  

is NP-Complete? Explain.

Solution:  We now know X is NP-Complete because a known NP-

Complete problem reduces to X.   Based on this knowledge we are 

very confident that X is not in P

(e) Suppose we find an algorithm that solves  in  time 

(remember that   is part of the instance definition).  Does this  

give us any information about whether  is in P, or whether  

is NP-Complete?  Explain.

Solution:  this gives us no information.   cannot be classed as 

polynomial time because   is not fixed.  We have no evidence that X

is NP-Complete.



Marking:  

For each part:

Correct answer and reasonable explanation 3/3

Correct answer and poor or no explanation 2/3

Incorrect answer with some explanation 1/3

Incorrect answer with no explanation 0/3



QUESTION 2 (10 Marks)

The 3-Colouring Problem 3COL:  Given a graph G on n vertices, can 

we colour the vertices of G using no more than 3 colours in such a 

way that no vertices that are joined by an edge have the same colour?

The 2-Colouring Problem 2COL: Given a graph G on n vertices, can 

we colour the vertices of G using no more than 2 colours in such a 

way that no vertices that are joined by an edge have the same colour?

3COL is known to be NP-Complete.  However there is a polynomial-

time algorithm for 2COL.  We can call this algorithm 2C-ALG.

Consider this algorithm for 3COL:

# Let the colours be red, yellow, blue
For each subset T of the vertex set of G: {

if T contains any vertices that are adjacent:
skip this T

else:
colour all vertices in T red
temporarily delete these vertices from G
use the polynomial-time 2C-ALG algorithm to see if

the remaining vertices can be properly 
coloured with yellow and blue

if the answer is “Yes”: print “Yes” and exit
else: restore G to its original state

}
print “No” # all attempts to 3-colour G have failed

This algorithm correctly solves 3COL .

Does this algorithm prove P = NP?   Explain why or why not.  If this 

space is too small for your answer, please use the back of this page.

Solution:  The algorithm does not prove P = NP.  Each iteration of 

the “for each” loop executes in polynomial time, but there are 

subsets of the vertex set of G so the loop may execute  times.  

Thus the complexity of this algorithm is not polynomial.



Marking:

Any solution that recognizes that there 10/10

are  subsets to be checked, so the algorithm

is not polynomial 

Any solution that says the algorithm takes 7/10

exponential time without relating it to the 

number of subsets of the vertex set

Any solution that says the algorithm does 5/10

not prove P = NP  but gives an invalid 

explanation, such as “These problems are 

not in NP”

Any solution that says the algorithm does 4/10

not prove P = NP but gives no reason

Any solution that says the algorithm does 2/10

prove P = NP, and tries to justify it

Any solution that says the algorithm does 1/10

prove P = NP, with no explanation



QUESTION 3 (10 marks)

Consider this variant of the Subset Sum problem:

25_Value_Subset_Sum: Given a set S of exactly 25 integers and a 

target integer k, does S contain a subset that sums to k?  

Prove this problem is in P by describing an algorithm to solve any 

instance of the problem in polynomial time.  You are not required to 

express your algorithm in a programming language – simply explain 

it in sufficient detail to demonstrate that it runs in polynomial time.  

You do not need to compute the exact order of your algorithm.

Solution:  S has exactly  subsets, which is a large but constant 

number.  Therefore we can examine all subsets of S in constant, ie 

O(1) time.

Marking:

Any solution that correctly explains that the problem 10/10

can be solved in O(1)  (ie constant) time

Any solution that proposes an algorithm that runs in 7/10

  time for some k > 1

A solution that proposes an algorithm that actually 4/10

runs in exponential time

A solution that proposes an algorithm that does not 1/10

solve the problem



QUESTION 4 (15 Marks)

Recall the Partition Problem:  Given a set of integers

 , does   contain a subset that sums to exactly

    (ie, half of the total sum)  ?      

We know that Partition is NP-Complete.

Consider this problem:

 :   Given a set of integers  (which may contain duplicate values), 

can   be divided into 3 disjoint subsets that all sum to the same 

value?

For example, if   then the answer to  is 

“Yes” because   can be divided into  each 

of which sums to 12.

(a)  [5 marks]    Prove that  is in the class NP

Solution:    is clearly a decision problem.  Let T be any instance 

of  with n elements.  If the answer is “Yes” and we are given the 

three subsets, we can sum each of the subsets in O(n) time, and 

confirm that the sums are equal in O(1) time.  Therefore the “Yes” 

solution can be verified in polynomial time, so  is in NP

(b) [10 marks]    Prove that 



Solution:   Let    be an instance of Partition.   

Construct an instance T of  as follows:

Compute   

If  is odd, 
 

If   is even, 

let  

This transformation clearly takes O(n) time.

Proof that the transformation is answer-preserving:

Suppose the answer to the Partition Problem on S is “Yes”

Then S can be divided into two subsets that each sum to  , ie 

they each sum to  .  Let these subsets be  and .   Then T can be 

divided into ,   and , each of which sums to  – so the answer

to  on T is “Yes”



Now suppose the answer to  on  is “Yes”.  We know  cannot 

be {1}, so we know  has an even sum.  The sum of all elements of

 is  , so each of the three subsets with equal sum must sum to

.  The added value  must be in one of the three subsets, and it 

must be alone in that subset.  Thus the other two sets each sum to  

(which equals   ), and they form a partition of .  Thus the answer 

to Partition on  is “Yes”.

Thus the transformation is answer-preserving.

Marking:

Part (a):  Essential points:

Decision problem 1 mark

Yes answers verifiable 2 marks

Verification in polynomial time 2 marks

Part (b):

Polynomial time transformation 3 marks

Answer-preservation

Correct proof 7 marks

Incorrect or incomplete proof 3 marks

Claim without proof 1 mark

Note that the transformation needs to deal with all possible 

instances of Partition.  My answer separates out sets with an odd 

total sum – student answers may deal with this differently but it 

must be true that the constructed instances of T contain only 

integers.
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