CISC-365*
 Test \#1
 January 30, 2019

Student Number (Required) \qquad

Name (Optional) \qquad

This is a closed book test. You may not refer to any resources.

This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be re-marked under any circumstances.

The test will be marked out of 50 .

Question 1	$/ 15$
Question 2	$/ 10$
Question 3	$/ 10$
Question 4 or 5	$/ 15$
	$/ 50$
TOTAL	

QUESTION 1 (15 Marks)

Let X be a problem in the NP class. The details of X are unimportant but you can assume that each instance of X consists of a set of n integers, and another integer t.
(Parts (a) through (e) are independent of each other. Each part is worth 3 marks)
(a) Suppose we find an algorithm that solves X in $O\left(2^{n}\right)$ time. Does this give us any information about whether X is in P , or whether X is NP-Complete? Explain.
(b)Suppose we are able to prove that every possible algorithm for X requires at least 2^{n} steps. Does this give us any information about the classes P, NP, and NP-Complete? Explain.
(c) Suppose we are able to show that $X \propto k$-Clique. Does this give us any information about whether X is in P , or whether X is NP-Complete? Explain.
(d) Suppose we are able to show that k-Clique $\propto X$. Does this give us any information about whether X is in P , or whether X is NP-Complete? Explain.
(e) Suppose we find an algorithm that solves X in $O\left(n^{t}\right)$ time (remember that t is part of the instance definition). Does this give us any information about whether X is in P , or whether X is NP-Complete? Explain.

QUESTION 2 (10 Marks)

The 3-Colouring Problem 3COL: Given a graph G on n vertices, can we colour the vertices of G using no more than 3 colours in such a way that no vertices that are joined by an edge have the same colour?

The 2-Colouring Problem 2COL: Given a graph G on n vertices, can we colour the vertices of G using no more than 2 colours in such a way that no vertices that are joined by an edge have the same colour?

3COL is known to be NP-Complete. However there is a polynomialtime algorithm for 2COL. We can call this algorithm 2C-ALG.

Consider this algorithm for 3COL:

```
# Let the colours be red, yellow, blue
For each subset T of the vertex set of G: {
    if T contains any vertices that are adjacent:
            skip this T
        else:
            colour all vertices in T red
            temporarily delete these vertices from G
            use the polynomial-time 2C-ALG algorithm to see if
                the remaining vertices can be properly
                coloured with yellow and blue
            if the answer is "Yes": print "Yes" and exit
            else: restore G to its original state
}
print "No" # all attempts to 3-colour G have failed
```

This algorithm correctly solves 3COL .

Does this algorithm prove $\mathrm{P}=\mathrm{NP}$? Explain why or why not. If this space is too small for your answer, please use the back of this page.

QUESTION 3 (10 marks)

Consider this variant of the Subset Sum problem:

25_Value_Subset_Sum: Given a set S of exactly 25 integers and a target integer k , does S contain a subset that sums to k ?

Prove this problem is in \mathbf{P} by describing an algorithm to solve any instance of the problem in polynomial time. You are not required to express your algorithm in a programming language - simply explain it in sufficient detail to demonstrate that it runs in polynomial time. You do not need to compute the exact order of your algorithm.

QUESTION 4

Recall the Partition Problem: Given a set of integers
$S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, does S contain a subset that sums to exactly $\frac{\sum_{i} a_{i}}{2}$ (ie, half of the total sum)?

We know that Partition is NP-Complete.
Consider this problem:
P_{A} : Given a set of integers T (which may contain duplicate values), can T be divided into 3 disjoint subsets that all sum to the same value?

For example, if $T=\{1,1,1,3,4,5,5,7,9\}$ then the answer to P_{A} is "Yes" because T can be divided into $\{1,1,1,4,5\},\{5,7\},\{3,9\}$ each of which sums to 12 .
(a) [5 marks] Prove that P_{A} is in the class NP
(b) [10 marks] Prove that Partition $\propto P_{A}$

