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“There is a very fine line between loving life and being greedy for it.” 

― Maya Angelou 



QUESTION 1 (16 Marks)

Suppose we have a computer which is based on the trinary system, 

rather than binary.  The fundamental unit of memory of such a 

system is called a trit (instead of bit).  We represent everything with  

tritstrings consisting of 0’s, 1’s and 2’s.   In such a system, the 

standard representation of the letter “A” might be “102210”, “B” 

might be “102211” etc.

Part A : [8 Marks]  

Adapt the Huffman Coding scheme to the trinary system, and give a 

clear description of your modified algorithm for constructing variable

length trinary codes.  You are not required to prove that your 

algorithm produces optimal trinary codes.

Solution:

Sort the characters in the source document according to their frequency (same as 

the original algorithm)

Build a trinary tree as follows:

choose the three characters with the lowest frequency, add a parent that has 

their combined frequencies, and put a 0, a 1 and a 2 on the edges joining them to 

their parent.

Remove the three characters from the set and add their parent (as a new 

character) to the set.

Repeat until there is a single root that represents the combination of all the 

characters.



Marking:

Sorting the set: 2 marks

Choosing the three smallest: 2 marks

Adding 0, 1, 2 to their codestrings: 2 marks

Replacing them by a combination 

item with their summed frequencies: 2 marks

A student whose answer shows a good understanding of the basic 

Huffman algorithm should get at least 4/8, even if they make errors in

translating it to the trinary version.

They are not required to present the algorithm in terms of building a 

tree.  They can describe the process as “add 0, 1, 2 respectively to the 

codestrings for the characters represented by the three lowest 

frequency items”



Part B : [8 marks]  

Show the application of your modified algorithm to the following set 

of letters, where each letter is followed by its observed frequency.  

Show the tree and codes that your algorithm constructs:
 

A 5

B 10

C 15

D 24

E 29

F 40

G 70

H 75

I 100



Marking:

The assignment of 0,1 and 2 to the edges of the tree are arbitrary so 

the codestrings they construct may be very different than mine, but 

the lengths should be the same (“I” should have a codestring of 

length 1, etc.)

It is important to correctly extract the codestrings from the tree (or 

alternative representation).  Some students may read the codestrings 

from the bottom up rather than from the top down, getting (for 

example) “100” for “B”.   This breaks the prefix rule and makes the 

code unusable.  

Showing the steps of the execution: 3 marks

Showing the codestrings correctly: 5 marks

Showing the codestrings incorrectly

(see explanation above): 2 marks



QUESTION 2 (12 Marks)

Suppose we have a set of n activities, each with a known start time  

and finish time  .  The activities may overlap.  Our task is to assign 

the activities to rooms so that each room contains a non-overlapping 

subset of the activities.  The goal is to use as few rooms as possible.  

In this example we need two rooms: one room for A1 and A3 and the 

other room for A2 and A4.

A greedy algorithm for this problem: sort the activities based on start 

time, then assign activities to rooms.  Use a new room only if the next

activity overlaps with activities in all existing rooms.  

Sort the activities based on start time and renumber them so that

Room_set = {1}
Busy_until[1] = 0
for i = 1 to n:

if there is any room x in Room_set with Busy_until[x]   :
assign Activity i to Room x
Busy_until[x] = 

else:
add a new room to Room_set
assign Activity i to the new room
set Busy_until[new room] = 

Question 2 continues on the next page.



Suppose the Algorithm puts Activities  into Room 1 and then 

puts Activity  into Room 2.

Prove that there is an optimal solution that does exactly the same 

thing.  

Hint:  Let O be an optimal solution ...

Solution:

Let O be an optimal solution, and suppose it does something 

different with the first i+1 Activities.  Renumber the rooms so that 

Activity 1 is in Room 1.  This does not change the number of rooms 

so this renumbered solution is still optimal.  Call it O’

Let Activity j+1 be the first Activity that O’ does not put in Room 1.  

(That is, O’ puts Activity 1, 2, ..., j in Room 1.)   If j = i, then 

renumbering the room that contains Activity i+1 to be Room 2 

exactly matches the algorithm’s action.  If j  i then it must be true 

that  j < i, since if j > i then the algorithm would not have put 

Activity i+1 into Room 2.

Let the Room containing Activity j+1 be Room k.   Swap Activity j+1 

and all following activities in Room k with all activities in Room 1 

that follow Activity j.  Because the earliest activity being swapped 

into Room k must have start time  , this is a feasible solution, 

and since it doesn’t use more rooms it is also optimal.  

This new optimal solution agrees with the Algorithm’s solution 

more than the previous one did.  We can repeat this swapping action 

until all of Activity 1, ... Activity i are in Room 1, and Activity i+1 is 

in Room 2.  This is exactly what the algorithm does.



Marking:

The main thing to look for here is whether the student understands 

how to approach this type of problem.  The details are less critical.

Recognizing that our goal is to take an arbitrary 

optimal solution and manipulate it to create

another one that matches the algorithm’s choices: 4 marks

Recognizing that no optimal solution can put 

Activities 1, 2, ..., i+1  into the same room: 4 marks

Recognizing that we can swap Activities (or groups

of Activities) between rooms without creating 

time-conflicts: 4 marks

Please give part marks to answers that show 

partial success with these aspects of the proof.

If a student takes a completely different approach and you are not 

sure how to grade it, please contact me.



QUESTION 3 (20 marks)

Let  be a set of n positive integers – possibly 

containing duplicates.   Let k be a positive integer.

Problem: Find a maximum-size subset A of S that has sum  k

For example, let S = {7, 4, 12, 1, 3, 18, 1,  240, 10} and k = 19

The solution is A = {7, 4, 1, 3, 1}  (in any order) which has size 5.

Part A : [6 marks]

Create a Greedy Algorithm to solve this problem.  State your 

algorithm in clear pseudo-code.

Solution:

Sort the values into ascending order, so 

total = 0

i = 1

solution = {} # empty set

while total +  <= k:

total = total + 

i = i+1

solution.append( ) # or “add  to the solution”



Marking:

Sort: 2 marks

Loop: 4 marks

No penalty if they forget to initialize the solution be empty – it’s an 

important implementation detail but not an essential conceptual part 

of the algorithm.

If a student gives an incorrect algorithm, but remembered that 

Greedy Algorithms always sort the set then iterate through the sorted

list, they should get 4/6



Part B : [14 marks]

Prove that your algorithm finds an optimal solution.   Use any valid 

proof technique.

Solution:

Let A be the algorithm’s solution and let O be any optimal solution.  

Sort O into ascending order.

If A and O are identical, then A is optimal.

Suppose A and O are equal up to and including , but differ in the 

next position.  The algorithm fills the next position with , so O 

must fill the next position with  where x > i+1.  This implies

, so we can remove  from O and replace it with  

without pushing the total over k.  This new solution has the same 

cardinality as O, so it is also optimal, and it has fewer differences 

from A.

We can repeat this sequence until we arrive at an optimal solution 

that has 0 differences from A – so A is optimal.

TL;DNR version of this proof:

Let O be any optimal solution that does not contain the smallest 

value in the set.  Swap the smallest value for any value in O.  The 

result is still optimal.  Continue until all the smallest values have 

been swapped in.  This matches the algorithm’s solution.



Alternative Proof:  Induction on the size of the set of values.

Base case:  If |S| = 0, then the empty set is the only solution (and 

thus it is the optimal solution.

Inductive Hypothesis:  Assume the algorithm always finds an 

optimal solution when the size of the set is   n, for some n    0.

Let |S| = n+1, and assume the set has been sorted into ascending 

order.   If    > k, there is no nonempty subset that sums to   k, and 

the algorithm correctly solves this case.

Assuming there is a non-empty solution, let A be the algorithm’s 

solution and let O be any optimal solution that does not contain .  

Replace any element of O with .  The result is still an optimal 

solution (call it O’), so the algorithm’s first action is correct.  This 

reduces the problem to a set of size n with a target value of  .  

By the inductive hypothesis, the algorithm finds an optimal solution 

to this reduced problem.

O’ also contains a solution to this same subproblem.  This implies    

|A| = |O’|  so A is optimal.



Marking:

The marking method here should be similar to Question 2, but it will 

depend on the proof type chosen by the student.

For the “eliminate differences” approach the essential concept is 

summarized in the TL;DNR version.   If they express this idea clearly 

they should get at least 10/14

Example of an answer which is insufficiently clear:

“We should never take a larger value when a smaller one is 

available”.  I would grade this at 7/14.  The idea is there but it is not 

fully developed.

For the inductive approach, use this grading scheme

Base case: 4 marks

Inductive Hypothesis: 3 marks

Inductive Step: 7 marks

In each part, give partial marks for proofs that have the right ideas 

but don’t express them clearly.

Note that the base case can be set up with sets of size 1 rather than 

with the empty set.



QUESTION 4 (2 Marks)   

True or false:

 David Huffman was a pioneer in the field of mathematical origami.

TRUE FALSE

Solution:  True

Marking:

True 2 marks

False 2 marks

No answer 2 marks

Yes, everyone gets 2 marks for this question.  Apparently some 

people think I am trying to trick them with the different font sizes 

for TRUE and FALSE.
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