
Dragon Flight Analyzer
A fuzzy logic system to determine if, and how well, a dragon might be able to fly      

Adrian L. Jessup Schneider

Introduction

Dragons—in  particular  the  winged  lizard-like  "western  dragons"—are  enduringly

popular  creatures  in  fantasy  media,  despite  the  many  implausible  features  dragons  are

portrayed as having. Some artists and viewers, as well as writers and readers, are content to

allow the impossible into their fantasy. These people might propose magic or different physical

laws as explanations, or else simply accept inconsistencies.

However, there are plenty of fantasy lovers who like fantasy elements to have some sort

of potential logic, not content with what cannot exist if they can instead have what merely does

not  exist. Creators and consumers might (and sometimes do) ask: What physical mechanisms

could allow a dragon to breathe fire? What skeletal arrangement could allow a vertebrate to

have six functional limbs? And, as we will be discussing in this paper, could an enormous, scaly,

toothy reptile actually fly?

How to Fly

The most basic question about a dragon is whether its wings are large enough to permit

flight. Even a rudimentary understanding of aeronautics tells us that a creature's wings need to

be big enough to support its weight, or it will fall out of the sky. Put more precisely, the ratio of

an  animal's  mass  to  the  total  area  of  its  wings  is  the  significant  factor.  This  measure  of

mass/area is called wing loading, and will be one of our two main measures for analyzing the

ability of a dragon to fly. Wing-loading figures for flying animals such as birds are often reported

as  grams per square centimeter,  kilograms per square meter,  or  (using weight  rather  than

mass) as newtons per square meter. In this paper, all wing-loading values will be stated in terms

of kg/m².

So,  what  does  wing  loading  tell  us  about  whether  a  dragon  can  fly?  There's  no

immediately obvious figure for wing loading that's "too big". Large airplanes can fly with wing

loadings of hundreds of kilograms per square meter. A Boeing 747 has a wing loading of around

730 kg/m², for example (Science Learning Hub, 2011).

It turns out the effectiveness of the wings for a given wing loading is dependent on how

quickly  the creature  or  object  is  flying:  the  faster  you fly,  the more wing  loading  you  can

endure. Naturally, powerful aircraft engines can deliver a lot more speed than the muscles of a

flapping animal. A frequently cited analysis suggests the maximum wing loading for a bird to fly

is around 25 kg/m² (Meunier, 1951). While a dragon is obviously not a bird, we can consider



big, heavy birds like albatrosses and swans as the closest approximations alive today to tell us

how large vertebrates might be able to fly.

This means we have our simple answer for whether a dragon can fly. Determine its wing

loading, and if that is within 25 kg/m², then it can fly. However, if we're going to all the trouble

of computing a fictional creature's mass and the area of its wings, it would be nice to get more

than just a yes/no for its flight capabilities. Can it fly quickly? Can it maneuver in flight? How

hard does it have to work to stay in the air? To answer these questions, we're going to go back

to birds and look at the influence that both wing size and wing shape have on how they fly.

How to Fly Well

While there are many factors that contribute to exactly how a bird flies—aerodynamics

of the body, exact contours of the wings, length of the tail, and other factors—we want to stay

within the realm of reasonable calculation. Building a scale model of a dragon we want to test,

giving it realistic texturing and putting it into a wind tunnel to test its aerodynamic properties

seems to be going a bit far for analyzing the capabilities of a fictional creature. Fuzzy logic is

perfect  for  this  task,  since using a fuzzy  rule  set  will  allow us  to sidestep the precise  and

extremely detailed analysis we would otherwise need.

However, we need more than just wing loading to build our rule set. There is another

measure of a bird's wings that is very powerful for explaining how one bird's flight differs from

that of another bird: aspect ratio.

The aspect ratio of a bird's wings is a measure of how long they are compared to the

width, or "chord", of the wings. A high-aspect ratio means the wings are long and narrow (like

those of an albatross), while a low-aspect ratio means broader and relatively shorter wings (like

a crow’s). Birds with high-aspect ratio wings tend toward a soaring style of flight, with their

wings held out straight, while low-aspect ratios are associated with more flapping. There are a

few ways to measure aspect ratio, but for this this paper, we will use the square of wingspan,

divided by the area of the wings. Given that this is  m²/m², aspect ratio is therefore a unitless

measure.

Together with wing loading, aspect ratio allows us two axes on which to characterize the

flight  capabilities  of  a  bird.  Birds’  wings  are  often  grouped  into  four  different  types,  with

different characteristics, as follows (Saville, 2006):

 Elliptical  wings:  short  and  rounded,  offering  high  maneuverability  and  good  for  rapid

takeoffs from the ground. Example birds: crows, pheasants (and most bats as well).

 High-speed wings:  short  and pointed,  offering high top speed at  the cost  of  fast,  tiring

flapping. Example birds: falcons, ducks.

 High-aspect ratio wings: long and pointed, offering efficient soaring, especially when flying

in the strong dynamic winds that occur over water. Example birds: albatrosses, gulls.



 High-lift wings: long and broad, with deep slots between feathers, offering slow soaring with

good but not outstanding maneuverability. Example birds: eagles, vultures.

Using our two measures of wing loading and aspect ratio, we can see that these four types of

wings approximate the four corners of a grid:

 Elliptical wings: low-aspect ratio, low wing loading

 High-speed wings: low-aspect ratio, high wing loading

 High-aspect ratio wings: high-aspect ratio, high wing loading

 High-lift wings: high-aspect ratio, low wing loading

These characteristics are very useful in creating the rules for our fuzzy logic system. But before

we dive into fuzzy rules, we need to be able to estimate our dragon's wing loading and aspect

ratio.

Statistics Time

We start with the givens for our dragon. The three values we need in order to calculate

its flight capabilities are wingspan, wing area, and mass. What input will allow us to find these

measures?

Wingspan is easy. Since we need to set wing length anyway, to test different sizes of

dragons, wingspan should be one of our starting parameters.

Figure 1: Silhouettes of the four main shapes of bird wings. Image by L. Shyamal, shared under the CC-BY-SA-2.5 license.



Wing area is somewhat more involved. Wingspan is close to being the combined length

of the wings, but we have to add in the width of the torso. While the width of the dragon's

torso could be a parameter, we already know we want the dragon's body to be lizard-like, since

that's the western-style dragon, the kind we're analyzing. While different lizards have different

degrees of skinniness, we want to be consistent about torso width, since it's the effectiveness

of the wings we want to analyze. We do want to be able to run the analysis for different overall

sizes of dragons, though, so the dragon's length will be a parameter, using a consistent torso

width to length ratio.

To develop a torso width to overall length ratio, we need a suitable lizard model. We

want a large lizard, since our analysis is all about what kind of wings a big animal needs to be

able to fly. The obvious lizard to use, of course, is the heaviest lizard in the world: the Komodo

dragon. (The name is a nice bonus.) Looking at photos of Komodos and measuring with a ruler,

the torso appears to be around one-tenth the length of the entire body, including the tail. The

length of each wing, therefore, will be: (wingspan - (body length)/10) / 2.

Finally, to calculate the area of the wings, we need a measure of their width. Unlike the

width of the torso, we must be able to adjust the width, or chord, of the wings, since aspect

ratio is one of the factors we are considering for dragons’ flight capabilities. We will therefore

add wing chord as a third starting parameter to describe our dragon.

If wings were rectangles, this would be enough: we would simply calculate the area of

the wings as length*chord. However, since wings are not rectangular, our calculation needs to

reflect actual wing shape. As we know, different bird species have different wing shapes, but

just as we have decided on a consistent torso width to reduce unnecessary variability, we will

do the same for wing shape. Two possible calculation approaches come to mind:

 Treat each wing as though it is a rectangle close to the body, and a triangle at the tip. This is

a good approximation of both high-speed wings and high-aspect ratio wings. The area of

such a wing is length*chord + length*chord*1/2 = length*chord*3/4.

 Treat each wing as though it is a quarter-section of an ellipse. This is a good approximation

of elliptical wings and high-lift wings. The area of such a wing is length*chord*π/4.

Given that pi is close to 3, these formulae are roughly approximate to each other, making it

unnecessary to use different calculations for different sorts of wings. Since we are interested in

making sure our dragon's  wings are large enough to allow flight,  we will  err on the side of

caution and take the lower estimate: three-quarters of length times chord.

Finally, we need the mass of our dragon. We have already decided to use a Komodo

dragon as our model, so we need the length-to-mass conversion rate for Komodos. A large male

Komodo dragon is about 3 meters long. In the comfort of captivity, one Komodo reached 166

kilograms, but a more typical lean, mean wild Komodo is around 70 kilograms (Smithsonian's



Natural Zoo & Conservation Biology Institute, 2016). The cube root of 70 is about 4.12, which,

divided by 3, gives us a calculation of approximately (1.37*length)³; 1.37 is close to being the

square root of 2 (1.41), which seems like a convenient bit of rounding up to account for any

extra weight due to the bodily attachment for wings.

That settles the mass of the body, but wing mass needs to be accounted for as well.

Unlike the simple cubic rule to get from body length to mass, it's not obvious how scaling from

smaller to larger wings will increase the mass of the wings. In theory, the mass of the wing must

at least increase proportionally to the area. However, using linear scaling does not account for

the  bones  and  muscles  becoming  thicker  from  bottom  to  top  to  support  the  added  wing

volume.

Does that mean we should assume the thickness of the wings increases in lockstep with

the width and length, giving an estimated scaling factor of (√area)³  = area1.5? Probably not.

While the bone- and muscle-dense front of the wing will increase in weight rapidly, the thin

trailing edge will increase far less, because the thickness of wings tapers toward the back edge.

Additionally, since the strength of bone is in large part proportional to its cross-sectional area

(Nelson,  Barondess,  Hendrix,  &  Beck,  2000),  just  as  the  strength  of  muscle  increases  in

proportion to its cross-sectional area (Jones, Bishop, Woods, & Green, 2008), increasing the

width of the wing will increase the strength of both bone and muscle. We should therefore

expect somewhere between quadratic (area1) and cubic (area1.5) scaling. For simplicity, let’s set

the exponent halfway between, making it area1.25.

To finish our estimate of wing mass, we need the appropriate constant factor to go

along with our 1.25 exponent, just as body mass has a constant factor of √2. For this, I used

published lists of actual wing areas and wing masses of various species of birds and bats (Van

den  Berg  &  Rayner,  1995;  Shyy,  Aono,  Kang,  &  Liu,  2013).  These  two  sources  combined

provided statistics for 43 species of birds and 10 species of bats,  which I  compiled and ran

through linear regression (x1.25 regression would have been ideal, but was not available in my

statistical tool, and for these low-mass animals the result will be extremely similar in any case).

This  produced  a  very  strong  regression  with  statistical  p-value  of  <.001,  giving  a

regression factor of 1.419. This is reassuringly close to our earlier use of √2, and I will use that

approximation again for simplicity.

To summarize the above, our analysis tool has three input parameters:

 Body length

 Wingspan

 Wing chord

And from these, we compute wing loading and aspect ratio as follows:



 Wing area = (wingspan - (body length)/10) * wing chord * 0.75

 Mass = (√2 * body length)³ + (√2 * wing area)1.25

 Wing loading = mass / wing area

 Aspect ratio = wingspan² / wing area

With these formulae established, we are ready to design our fuzzy logic system to use these

formulae to compute wing loading and aspect ratio values to tell us whether and how well our

dragon could fly.

Rule of Fuzz

Earlier, we defined the four types of bird wings (elliptical, high speed, high aspect ratio,

and high lift) in terms of expected wing loading and aspect ratio characteristics:

 Elliptical wings: low-aspect ratio, low wing loading

 High-speed wings: low-aspect ratio, high wing loading

 High-aspect ratio wings: high-aspect ratio, high wing loading

 High-lift wings: high-aspect ratio, low wing loading

Now that we have calculated wing loading and aspect ratio, these will form the basis of our

fuzzy rule set.

What  do  these  four  categories  mean  for  flight  characteristics?  We  are  especially

interested  in  how fast  our  dragon  can fly (Speed),  how long it  can  fly  before  getting tired

(Efficiency), and how easily it can take off, land, and steer in the air (Maneuverability). Van den

Berg and Rayner, and Shyy et al also provide information on flight characteristics.

Elliptical  wings  are  helpful  to  steer  around  obstacles  and  take  off quickly  to  avoid

predators,  giving them a high maneuverability  rating.  However,  the rapid flapping  of  short

wings is tiring (low efficiency), and these wings are not particularly fast (medium speed).

High-speed wings, as their name indicates, provide high speed. They are functionally as

tiring as elliptical wings, if not more so (low efficiency), and the higher wing loading reduces

maneuverability somewhat (medium maneuverability).

High-aspect ratio wings, such as those on soaring sea birds, provide high efficiency. They

are not particularly fast wings (medium speed), and the combination of high-aspect ratio and

high wing loading makes birds like albatrosses famously poor at efficient takeoff and landing

(low maneuverability).

High-lift wings are also used for soaring, and, like high-aspect ratio wings, they provide

high efficiency. The sheer size of the wings gives a low speed, but maneuverability is improved

over high-aspect ratio wings by the lower wing loading (medium maneuverability).

Our current rule set looks something like this:



1. Low-aspect ratio & low wing loading = medium speed, low efficiency, high maneuverability

2. Low-aspect ratio & high wing loading = high speed, low efficiency, medium maneuverability

3. High-aspect ratio & high wing loading = medium speed, high efficiency, low maneuverability

4. High-aspect ratio & low wing loading = low speed, high efficiency, medium maneuverability

This is a good start, but there are two problems. First, we’re missing a rule to deal with cases

when wing loading is too high to allow flight ("extreme" wing loading). This can be solved by

making a new rule saying that extreme wing loading, regardless of aspect ratio, indicates zero

speed, zero efficiency, and zero maneuverability.

Second, except for extreme wing loading, aspect ratio and wing loading are expressed

only in terms of high and low, while our flight characteristics have low, medium, and high.

Surely, though, it's possible to have a medium aspect ratio, and a medium wing loading. While a

rating of medium, or average, could simply be assigned to the midpoint where low and high

meet, it seems preferable to be able to say that a wing is functionally average in either of the

measures.  This  also has  the advantage  of  making our  rule  more accurate  by making these

measures applicable to aspects of functioning.

For example, high-aspect ratio wings are, of course, associated with a high-aspect ratio,

but  not  necessarily  with  high  wing  loading.  Some  smaller  species  of  albatross  have  more

moderate wing loading. Birds with high-lift wings, meanwhile, sometimes have more moderate

aspect ratios than high, because extremely long wings can make nesting difficult. This applies to

many eagles, for example, which have shorter wings than their high-aspect ratio would seem to

indicate.  Elliptical  wings  can  be  strained  to  moderate  wing  loading  by  larger  birds  like

pheasants, which benefit from flying quickly for short distances, while high-speed wings can

have a more moderate aspect ratio for birds like swifts that benefit from staying in the air

longer (Witton & Habib,  2010; Savile,  2006; Henningsson,  Hedenström, & Bomphrey,  2014;

among others).

Establishing medium-aspect ratio and medium wing loading allows us to make those

distinctions. It also produces the intermediate "unspecialized" category of wings for medium-

aspect ratio and medium wing loading, which will help reduce swings between extremes that

might otherwise be caused by relatively small adjustments.

Putting all this together, our fuzzy rule set contains 6 rules:

Aspect

Ratio

Wing Loading Wing Type Speed Efficiency Maneuverabilit

y

Low ¬High, ¬Extreme Elliptical Mediu

m

Low High

!High High High Speed High Low Medium



High ¬Low, ¬Extreme High  Aspect

Ratio

Mediu

m

High Low

!Low Low High Lift Low High Medium

Medium Medium Unspecialized Mediu

m

Medium Medium

— Extreme Flightless None None None

The last step before our system is ready for use is to figure out what membership values

correspond to these fuzzy categories.

What is the Fuzziest Number That You'll Ever Know?

We already have our answer for what an "extreme" wing loading is, numerically: 25 kg/

m².  However,  some research is needed to determine where to set the boundaries for  low,

medium, and high.

According to  Energetics of Flight (Norberg, 1996), wing loading for birds ranges from

about 1.73 kg/m² (small hummingbirds) to 23.45 kg/m² (whooper swans). Bats have low wing

loading compared to birds, and Neuweiler (2000) presents a graph showing bat wing loading

ranging from about 0.3 to 3  kg/m². Finally, Witton and Habib (2010), in a chart showing the

wing loading of various sea birds, reveal that giant petrels and some large species of albatross

range upward to about 15 kg/m², while medium-size albatrosses range down to around 10 kg/

m².

Taken  together,  these

values suggest that a "high" wing

loading  value  should  be  fairly

broad, ranging from around 10 to

25 kg/m². This wide range makes

sense, since many birds need to

be  able  to  fly  while  carrying

objects  or  after  eating  a  large

meal, which increases their mass,

and therefore their wing loading.

Some  birds  with  relatively  high

wing loadings will therefore still be well below their wings' theoretical maximum weight. The

remaining wing loading categories can be filled in simply by putting the centre of "medium"

wing loading at 10, and the upper inflection point of "low" at 5.



For aspect ratio, Norberg (1996) notes that aspect ratio varies from 4 to 18 across bird

species.  For  more detail  on exactly  where  to  cut  the break  points,  Savile  (2006)  says  that

elliptical wings tend toward an aspect ratio of 4.5-6, high lift wings around 6-7 or higher, and

high aspect ratio wings from 8 and up.

Given that low-aspect ratio

elliptical  wings  and  medium-to-

high-aspect  ratio  high-lift wings

meet  at  around  6,  we  should

expect  an  aspect  ratio of  6  to  be

moderately  low,  meaning  it  falls

between the upper inflection point

of  low  and  the  peak  of  medium.

Placing the peak of "medium" right

in the middle of the 6-7 range for

relatively short-winged high-lifters accomplishes this nicely. Meanwhile, 8 seems to be the start

of the zone where an aspect ratio is entirely in the high range. If  the intersection range of

medium and high aspect ratio is 6.5-8, then we might as well  make the "medium" triangle

symmetrical, placing our upper inflection point for "low" aspect ratios at 5.

Finally, we need to determine the fuzzy operators we're using for our rules, and how the

consequents of the rules transfer to membership in our three output sets: Speed, Efficiency,

and Maneuverability.

First, we need an "and" operator. We have no specific needs to satisfy, so we can simply

use minimum. Second, we need negation, for which standard negation will suffice. Third, we

need an "or" operator. In this case, we do have a particular need, because of the rule for how

elliptical wings work. Using maximum won't work, because we need the membership value of

22.5 kg/m² to be 1.0 for the statement !(High or Extreme). Instead, with maximum, we will use

0.5. Since we have arranged our membership values above, such that the total membership

value across all categories will be 1.0 for any wing-loading value, we are able to use an unusual

"or" operator:  arithmetic sum. In the range we need to be equal to 1.0, High+Extreme will

always be 1.0, whereas if High and Medium are partially true, then Extreme will be 0.0 and the

membership of High+Extreme will simply equal High.

We now have everything we need to determine the degree to which each of our fuzzy

rules is true. The last step is to pull the consequents together to determine membership in our

three output sets. The Mean of Maxima method is unsuitable, because we don't want to ignore

any non-maximal results. Even if our dragon's wings are only a little like elliptical wings, we still

want that to be reflected in our output. Instead, the Center of Mass method is suitable, since it

allows us to easily let all rules influence the fuzzy outputs. If we use scaling rather than clipping,



and ensure our output membership categories are all symmetrical, then computing the centre

of mass is simply a matter of multiplying the consequent of each rule by the median value of

the output category,  summing across all  rules,  and dividing by the cardinality of the set of

consequents.

In  terms  of  the

membership categories of

the fuzzy outputs, each of

them is  divided into  four

categories: high, medium,

low, and (for the extreme

wing-loading  rule)  none.

Finding the centres of high

and  none  is  easy:  simply

place them at 1.0 and 0.0

respectively. For the remainder, there are effectively five other gradations. In addition to "low"

and "medium", there are also the crossover zones between none and low ("very poor"), low

and medium ("moderately low"), and medium and high ("moderately high"). Placing the peaks

of low and medium at 0.3 and 0.7, respectively, affords an equal share to each of these zones,

which  is  mathematically  tidy.  "None"  and  "high"  are  defined  as  triangles  so  they  will  be

symmetrical, as described in the previous paragraph, though of course in practice, there will

never be a membership value lower than 0.0 or higher than 1.0.

Since we want  to  avoid  the  huge  number  of  factors  that  go  into  calculating actual

numbers for the outputs, we will not defuzzify them. It's quite sufficient to have a membership

value of how fast, how efficient, and how maneuverable our dragon's flight is.

Basing the classic western-style dragon on elements of bird and lizard physiology, this

paper uses fuzzy logic to prove that dragons would be capable of flight. While larger-winged

dragons  are  more  aerodynamically  feasible  than  the  large-bodied  smaller-winged  dragons

sometimes  depicted,  the  shape  of  the  wing  and  desired  flight  characteristics  are  also  key

variables, so that the feasibility of dragon flight does not come down to a wing size–body mass

ratio alone. For those viewers and readers of fantasy whose suspension of disbelief can be

dangled only so far, this is welcome information.  After all, as J.R.R. Tolkien said in The Hobbit,

"It does not do to leave a live dragon out of your calculations, if you live near him."



Example

Suppose we have a dragon the size of a Komodo dragon, at 3m long. How large should

the wings be? We start with some simple numbers: suppose 3m body length, 6m wingspan, 1m

wing chord. Can this dragon fly?

Yes, it can. However, the wing loading is bordering on extreme. Our poor dragon is one

large meal away from being grounded. Let's increase the wingspan and wing chord a bit, to give

a little more leeway.



That's better. With an 8.29m wingspan and 1.765m wing chord, our dragon can fly easily

on unspecialized wings. Tweaks in any direction can give our dragon any of the four main wing

types. Lowering the wing chord, for example, will increase both wing loading and aspect ratio,

edging the dragon toward high-aspect ratio wings that are good for soaring. Decreasing the

wingspan, meanwhile, will lower the aspect ratio while increasing wing loading, helping move

the dragon toward high-speed wings.
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