CISC101 Reminders & Notes

- Test 1 this week
 - Will take place in your tutorial
 - Lab will still follow
- Assignment 1 should be marked in two weeks
 - Look for your grade in Moodle
 - Contact your TA if you have any guestions or concerns
- Assignment 2 will be posted next week

Winter 2011 CISC101 - Whittaker Winter 2011 CISC101 - Whittaker 2 Slides courtesy of Dr. Alan McLeod Slides courtesy of Dr. Alan McLeod From Last Time ... **Documentation Strings** • Put a string literal right after the def ... statement Supplemental notes from Jan. 25th - This is a documentation string - Functions It will be regurgitated by the help system - Variable scope - Can also be accessed using special variables - Demo: WindowWeight.py Notes from Jan. 25th • Try typing help(main) at the >>> prompt Global variable demo Use triple quotes to place a large document Slides 28 Typically used when creating object definitions - Programming style - Classes (which we won't be doing) Slides 29-35 • Not a bad habit to get into ... Winter 2011 3

A Minor in Computing?

- Are you interested in finding out what is required for a Minor in Computing?
 - Please contact our Undergraduate Chair
 - Dr. Bob Tennent (rdt@cs.queensu.ca)

Winter 2011

Ĩ	Unary Boolean Logical Operators
 We need to know how to construct expressions that evaluate to a bool a bool in Python is either True or False Use Boolean operators to create expressions Work like mathematical operators, but they produce Booleans instead of numbers Boolean operators are either unary or binary Unary requires one data value e.g., NOT a Binary requires two data values e.g., a < b, a OR b 	 Python has a Boolean logical operator not Must be used on a <i>single</i> bool value Sets False to True Sets True to False Just like the Boolean logical operator NOT (!) <u>a</u> (! a) <u>0</u> 1 <u>1</u> 0
/inter 2011 CISC101 - Whittaker Slides courtesy of Dr. A.	9 Winter 2011 CISC101 - Whittaker 10 Ian McLeod Slides courtesy of Dr. Alan Mc
Binary Boolean Logical Operators	Binary Boolean Operators
Binary Boolean Logical Operators• Python has Boolean logical operators and and a – Must be used on two bool values – Work just like the Boolean logical operators AND (\wedge) and OR (\vee) $\frac{a \ b \ (a \land b)}{0 \ 0 \ 0}$ $\frac{a \ b \ (a \lor b)}{0 \ 0 \ 0}$ $\frac{a \ b \ (a \land b)}{0 \ 0 \ 0}$ $\frac{a \ b \ (a \lor b)}{0 \ 0 \ 0}$ $\frac{1 \ 0 \ 0}{1 \ 1}$ $\frac{1 \ 0 \ 1}{1 \ 1}$	Binary Boolean Operators or > greater than < less than

if-elif Statements if-elif Statements - Cont. This leads to a common construct often called a In the code in SortThree.py, you might have chained if construct noticed this construct: You can have as many else : if condition1 : elifs as you want statement(s) **if** a < c : • The else is optional elif condition2 : statement(s) if condition1 : This kind of thing occurs so often that it can be elif condition3 : statement(s) shortened to: statement(s) elif condition2 : else : statement(s) elif a < c : statement(s) elif condition3 : statement(s) Winter 2011 CISC101 - Whittaker 21 Winter 2011 CISC101 - Whittaker 22 Slides courtesy of Dr. Alan McLeod Slides courtesy of Dr. Alan McLeod if-elif Statements - Cont. if-elif Statements - Cont. There is nothing in this construct that you could Good lab exercises! not make with normal if-else statements - Rewrite GradeCodes.py using a nested if construct • For some kinds of conditionals, the if-elif - Rewrite SortThree.py with a chained if construct might be easier to put together • For example, consider letter grades In both cases, compare the versions Demo: GradeCodes.py - Is one more efficient than the other? 0 to 50 is F · Count the maximum number of comparisons that are made 50 to 70 is C - Which version is easier to write and debug? • 70 to 85 is B 85 to 100 is A Anything else is an illegal grade Winter 2011 CISC101 - Whittaker 23 Winter 2011 CISC101 - Whittaker 24 Slides courtesy of Dr. Alan McLeod Slides courtesy of Dr. Alan McLeod

Comparing Strings ASCII Boolean comparison operators work on strings American Standard Code for Information Interchange "abc" == "abC" gives False - Each character is represented by a byte (8 bits) "abc" < "abcd" gives True Maps integers from 0-127 to characters "A" < "a" **gives** True $-A-Z \rightarrow 65-90$ "a" < "b" gives True $-a-z \rightarrow 97-122$ ASCII was a standard These comparisons are based on the ASCII code - Now the Unicode scheme is commonly used values of the characters compared Uses more bits - See Appendix C in the textbook Includes more alphabets - Unicode is compatible with ASCII Winter 2011 CISC101 - Whittaker 25 Winter 2011 CISC101 - Whittaker 26 Slides courtesy of Dr. Alan McLeod Slides courtesy of Dr. Alan McLeod

ASCII	Table	(Lower	Half)

	0	1	2	3	4	5	6	7	8	9
[nul	soh	stx	etx	eot	enq	ack	bel	bs	ht
t	nl	vt	ff	cr	so	si	dle	dc1	dc2	dc3
ł	dc4	nak	syn	etb	can	em	sub	esc	fs	gs
i	rs	us	sp	!	"	#	\$	%	&	•
ţ	()	*	+	,	-		1	0	1
; [2	3	4	5	6	7	8	9	:	:
	<	=	>	?	@	A	В	C	D	E
	F	G	Н	Ι	J	К	L	М	N	0
3	Р	Q	R	S	Т	U	v	W	X	Y
)	Z]	١]	^	-	,	a	b	с
	d	e	f	g	h	i	j	k	1	m
L I	n	0	р	q	r	s	t	u	v	w
2	x	у	z	{	1	}	~	del		

ASCII and Python

- BIFs in Python can convert characters
 - A character is a string of length one
- ord(aChar)
 - Returns the ASCII value of the given character
- chr(anInt)
 - Returns the character for the given ASCII value

Slides courtesy of Dr. Alan McLeod