
CISC101 Reminders & Notes

• Discussion: lab and tutorial sections

• Labs and tutorials start tomorrow
– Meet your TA
– Work on the lab for Week 2
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– TAs can answer questions

• Assignment 1 has been posted
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Today

• How can we tell the CPU what to do?

• Where Python comes from

• Language fundamentals
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• Language fundamentals
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Commanding the Processor

• Suppose we want the processor to carry out an 
operation
– X = A * B + C

• Assume we have used some other operations to 
put numbers in three memory locations in RAM

is at address 

Slides courtesy of Dr. Alan McLeod

– A is at address 1024

– B is at address 1025

– C is at address 1026

• We want the result to go into memory location 
1027 for X
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X = A * B + C

• Remember the “von Neumann Cycle”?
• The operations in the ALU (or “Arithmetic Logic 

Unit”) part of the CPU would be ...
1. Fetch the contents of location 1024 (A) 

• Put the value into a register

2. Fetch the contents of location 1025 (B) 
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2. Fetch the contents of location 1025 (B) 
• Multiply it with the value (A) in the register
• Store the result (A * B ) in the same register

3. Fetch the contents of location 1026 (C)
• Add this value to the contents of the register (A * B + C ) 

4. Move the contents of the register to location 1027 (X)
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X = A * B + C, Cont.

Naturally, these instructions have to be 
communicated to the CPU in binary ...

1.  00010000 000000000000010000000000

2.  00100100 000000000000010000000001

3.  00100011 000000000000010000000010
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3.  00100011 000000000000010000000010

4.  00010001 000000000000010000000011

byte 1 bytes 2, 3 and 4

operandopcode
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X = A * B + C, Cont

• What are these instructions in base 10?

1. 16 1024

2. 36 1025

3. 35 1026

4. 17 1027
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• The operands are the memory locations
• The opcodes are 16 for load, 36 for multiply, 35

for add and 17 for store
• The default register is used

– Does not need to be specified
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Machine Language

• The 4-byte binary commands are examples of 
machine language

• Normally these commands would be viewed in 
base 16, or hexadecimal

1. 0x10000400
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1. 0x10000400

2.0x24000401

3.0x23000402

4.0x11000403
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X = A * B + C, Cont

• People have problems remembering binary codes 
and even decimal codes for operations

• A “shorthand” language called Assembly 
Language was introduced
– Works at a level above machine language
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X = A * B + C, Cont.

• (Pseudo) Assembly language instructions:

1. LOAD A, ACC

2. MULT B, ACC

3. ADD C, ACC
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4. STOR ACC, X

• Each assembly language keyword is translated 
into its corresponding machine language code

– Done by an “interpreter” program called an Assembler
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X = A * B + C, Cont.

• A “high-level” language goes one step above 
assembly language

• In C, C++, C# or Java you would write 

X = A * B + C;

• Python is the same, except no semi-colon
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• Python is the same, except no semi-colon
• Each high-level line of code gets translated into 

many lines of assembly code
– Each line of assembly code must then be translated 

into binary machine language

• Much easier to write, yes?
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Aside - A Program in C and Assembly

Here is a (very) short C program with our 
calculation:

int main() {

int a = 1, b = 2, c = 3, x;
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int a = 1, b = 2, c = 3, x;

x = a * b + c;

return 0;

}
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Aside - Cont.

Here is the (real) Assembly language portion for just 
the x = a * b + c; line:

mov 0xfffffffc(%ebp),%eax

imul 0xfffffff8(% ebp),% eax
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imul 0xfffffff8(% ebp),% eax

mov 0xfffffff4(%ebp),%edx

add    %eax,%edx

mov %edx,0xfffffff0(%ebp)
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Computer Languages - Cont.

• Each assembly language command is translated 
into several machine language commands

• The next generation of computer languages went 
up one more level
– Got closer to something readable
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– e.g., Fortran, Cobol and Lisp

• These languages led to an explosion of over 200 
languages being developed in the 60s and 70s
– e.g., Basic, Pascal, C, Ada and Smalltalk

• Python is a relative newcomer, arriving on the 
scene in the early 90s
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History of Python

• The language was created by Guido van Rossum
at Stichting Mathematisch Centrum in the 
Netherlands in the early 90s

• He is still very involved with the 
language
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• Retains the title BDFL
• Benevolent Dictator for Life

• Python is named after “Monty 
Python”, not the snake!
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History of Python - Cont.

• He wanted to make the language
– easy and intuitive 

• … but just as powerful as major competitors

– open source
• anyone can contribute to its development 

– use code that is as understandable as plain English
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– use code that is as understandable as plain English
– to be suitable for everyday tasks

• First released in 1994, the language was inspired 
by Modula-3, Lisp, SETL, Haskell, Icon and Java
– A compilation of the “Best-Of’s” from many other 

languages!
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Features of Python

• High Level
– Most notable are the built-in data structures

• Object Oriented
– OOP helps you to build code in a modular way
– Python allows you to write code without knowing 

anything about OOP!
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anything about OOP!

• Scalable
– Packaging of code allows even very large programming 

projects to be manageable

• Extensible
– You can easily use external code modules written in 

Python, C, C++, C#, Java or Visual Basic
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Features of Python - Cont.

• Portable
– Runs on any platform/OS combination that can run C

• Easy to Learn (!)
– Relatively few keywords, simple language structure and 

clear syntax
– OOP can be avoided while learning
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– OOP can be avoided while learning

• Easy to Read
– Much less punctuation than other languages
– Forces you to use good indentation

• Easy to Maintain
– Results from the two above features!
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Features of Python - Cont.

• Robust
– Exception handlers and safe, sane and informative 

crashes

• Good for Rapid Prototyping
– Often used with other languages to create prototypes 

and provide a testing platform
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• Built-In Memory Management
– Like Java; avoids a major problem in C/C++

• Interpreted
– Not compiled; each command is executed as it is read 

from the program
– Speed is increased using byte-compiled files (like Java)
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Compiled vs. Interpreted Languages

• Compilation means that the machine code 
translation of a program must be created 
completely before the program is run

• This machine code is usually saved in a file
– e.g., an executable (*.exe) or some kind of compiled 

library of code (*.dll)
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library of code (*.dll)

• Advantage: these programs can run very quickly
– Little or no translation is required

• Disadvantage: the editing/testing/debugging loop 
takes longer

• Languages like C and C++ are compiled
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Compiled vs. Interpreted Languages - Cont.

• When a program in an interpreted language is 
run, the machine code is generated and executed 
one line at a time

• No machine code is saved as a file
• Advantage: ease of development and testing
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– Better productivity

• Disadvantage: speed
– Interpreted code can be up to 10 times slower than 

compiled
– Longer execution times
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Compiled vs. Interpreted Languages - Cont.

• A modern trend is to have interpreted languages 
create a file that is partially compiled
– A byte code file

• This speeds up execution without giving up any of 
the advantages of using an interpreter
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• Python can, and Java does, work this way
• C, C++ and Java programs often run faster than 

Python programs
– Many computing-intensive Python operations are 

“farmed” out to libraries written in C
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Python!

• When you see the Python prompt

>>>

you know you are speaking directly to the 
interpreter
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interpreter
• If you want to store your commands in a file that 

can be edited without retyping everything, create 
a script or program

• The program can be easily fed to the interpreter
– Executes it one line at a time
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Python Demos

• First one: Ritual!
– “Hello World” at the command prompt
– “Hello World” in a script (or “program”)
– “Hello World” in a function in a program
– Jazz it up a bit:
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– Jazz it up a bit:
• Add a comment or two
• Get some input from the user

• Second one: triangle calculation
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Triangle Calculator Demo

• A program that obtains two numbers from the 
user and then returns the side length of the third 
side of a right angle triangle
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a

b

22 bac +=
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Built-In Functions

• Also known as BIFs
• Named pieces of code provided by Python

– Accomplish fundamental and common tasks
– Used or invoked by "calling their names”

• What do some of the BIFs do?
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• What do some of the BIFs do?
– Write output to the screen (e.g., print() )

– Convert data from one type to another
– … and more

• Often provide data for functions inside ()
– These parameters are separated by commas
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Literal Values and Data Types

• A literal value is a specific data value 
– The value of the data is “literally” itself
– e.g., 42, 3.1416, “Monty Python”, True, …

• Literals must be one of several data types
– int
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– float

– str

– bool ( only possible values are True or False)

– … and some others we’ll see later
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Numeric Types

• The int type is an integer (no decimal or 
exponent) and there is no limit to its size

• The float type is characterized by a decimal 
place and/or an exponent
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– It is limited to about 17 digits

• (We won’t use the complex type much!)
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Other Bases

• Normally we view numbers in base 10, or in a 
radix of 10
– That’s the default in Python

• How can you view numbers in base 2, 8 or 16?
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• Use prefixes 0b , 0o or 0x on literals

• Use the BIFs bin() , oct() and hex()
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Sequence Types

• The str type represents a sequence of 
characters enclosed in …
– single quotes
– double quotes
– three single quotes
– three double quotes
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– three double quotes

• We’ll look at other sequence types (e.g., list ,
tuple ) later in the class
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Variables

• What is a variable anyways?

• In Python, variables are created by an assignment 
statement (or in function parameter lists)

• A variable takes the type of the value being 

Slides courtesy of Dr. Alan McLeod

• A variable takes the type of the value being 
assigned to it when the program runs

• A variable’s value can change at any time

• Can a variable change its type at any time in 
Python? Yes!
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Assigning/Creating a Variable

• In code: 
myVal = 20

• Now myVal refers to some location in RAM that 
stores the int type value 20
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stores the int type value 20

• We don’t have to worry about what the actual 
memory address is!
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Variable Naming Syntax Rules

• Variable names are case sensitive
• You can’t use a Python keyword for a variable 

name
• No spaces!
• Start with a letter (use lower case, by convention)
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• Start with a letter (use lower case, by convention)
– Can also use underscore _

• The rest of the name can contain numbers, letters 
or the underscore
– No spaces ! (oops I said that already!)
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Variable Naming Style Rules

• Use descriptive names
• Capitalize successive words in a name

– Use camelCase

• No limit to the length of a variable name …
– … but don’t write an essay!!
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– … but don’t write an essay!!

• Don’t use single letter variable names
– Exception: a loop counter that has no intrinsic meaning
– Then you can use i , j or k
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Keywords

• Words used by Python for specific purposes
– Considered part of the Python language
– e.g., if , while , import , …

• Used to construct programs that can …
– test conditions

Slides courtesy of Dr. Alan McLeod

– test conditions
– perform tasks repetitively
– use other Python functions
– … and more!

• Can not use keywords as variable names
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Arithmetic Operators

• As listed in Lab 1:
+ addition 
- subtraction (and unary negation) 
* multiplication 
/ division 
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// "floor" division 
% modulo or "remainder" 
** exponentiation or "to the power of" 

• The first four make sense, how do the last three 
work?
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/ or Division

• For example, what is the value of 1 / 3 ?

0.3333333333333333

• In previous versions of Python the result of int
divided by int would be an int
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– Not any more!
– Now the result is a float .
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// or Integer or “Floor” Division

• What is the value of 1 // 3 ?

0

• The result is always truncated, not rounded
– So 99 // 100 is also zero
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– So 99 // 100 is also zero

• You still get the truncated value, even if one or the 
other numbers are float s
– So 1.0 // 3.0 is still 0.0
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%or “Modulo”

• Always gives the remainder after division

• For example 20 % 3 is 2
– int values yield an int result

• Also works with float s
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• Also works with float s
– Result is a float
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** or “To the Power Of”

• Example: 5 ** 2 is 25

• If both numbers are int s, the result is an int
– You can generate some pretty large int values this 

way!
– Example: 5 ** 100 is 78886090522101180541172 

85652827862296732064351090230047702789306
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85652827862296732064351090230047702789306
640625

• If at least one number is a float , the answer is a 
float
– So 5.0 ** 100 is 7.888609052210118e+69
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Mixed Numeric Types

• If you have an expression like
aVal = 4 + 5 – 2.0

the result will always be a float
– 7.0 in this case.

• So, if you get any float values in an expression 
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• So, if you get any float values in an expression 
that has integers the result will always be a 
float
– Example: 4 + 10 / 5 gives 6.0
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Strings and Numbers

• Multiplication

5 * ‘abc’ is ‘abcabcabcabcabc’

• The other numeric operators will not work with 
strings
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strings

Winter 2011 CISC101 - Whittaker 41

Addition and Strings

• The + sign not only adds numbers but can also 
concatenate strings (and collections)

• Shall we try it out?

• You can concatenate a number to a string, but 
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• You can concatenate a number to a string, but 
you have to convert it to a string first using the 
str() BIF

Winter 2011 CISC101 - Whittaker 42

Precedence Rules

• Suppose I have an expression like:

a = 5 * b + 27 / c

• How do we know the order of operations?

** first, then - (as unary negation), then *, / , //
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• These rules are built-in to the interpreter
– = is always last (why?)

** first, then - (as unary negation), then *, / , //
and %, then + and - , and then =
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Precedence Rules - Cont.

• Rules again:

**

- (unary)
* / // %

All operators on the same 
line have equal precedence.
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* / // %

+ -

=

line have equal precedence.
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Precedence Rules - Cont.

• How can you take over control of the order of 
operations?  Use the round brackets!

• Example: (4 + 5) // 3 is 3
while 4 + 5 // 3 is 5
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while 4 + 5 // 3 is 5

• What if you have a series of operators that have 
equal precedence and no brackets to control 
things?
– The expression is evaluated from left to right
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Indentation

• Press the <tab> key to get an indent in your code, 
if you need one

• Use the <Backspace> key to get out of an 
indentation

• Don’t type spaces for indents!  
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• Indents are very important in Python, they are not 
just “whitespace”!  

• IDLE starts indentation automatically, especially 
after you type a :
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Using the print() BIF

• Writes the given values on the screen 
• You can supply any number of parameters to the 

function by supplying a comma-separated list of 
parameters inside the brackets
– May also include no parameters at all
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• Parameters can be variables or literal values
– Or values supplied by some other function

• Comma-separated values are printed together 
separated by a space, by default

• What are two ways to avoid this behaviour?
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Escape Characters

• Can be used to control how strings are displayed 
when using the print() function

• See table 2-7 in the textbook
\n - linefeed
\t – tab character
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\’ – single quote
\” – double quote
\\ - backslash

– You can also use triple quotes to create a multi-
line string without using escape characters
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Some Punctuation …

• Comments start with the pound sign #

• Long lines can be continued using \

• Put a lower case r in front of a string literal to get 
a “raw string”
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a “raw string”
– Escape characters will not format the string in this case
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