CISC101 Reminders & Notes

e Discussion: lab and tutorial sections

» Labs and tutorials start tomorrow
— Meet your TA
— Work on the lab for Week 2
— TAs can answer questions

» Assignment 1 has been posted

Winter 2011 CISC101 - Whittaker 1

Slides courtesy of Dr. Alan McLeod

Today

* How can we tell the CPU what to do?
* Where Python comes from

* Language fundamentals

Winter 2011 CISC101 - Whittaker 2

Slides courtesy of Dr. Alan McLeod

Commanding the Processor

» Suppose we want the processor to carry out an
operation
-X=A*B+C

» Assume we have used some other operations to
put numbers in three memory locations in RAM
— Alis at address 1024
— Bis at address 1025
— Cis at address 1026

* We want the result to go into memory location
1027 for X

Winter 2011 CISC101 - Whittaker 3

Slides courtesy of Dr. Alan McLeod

X=A*B+C

* Remember the “von Neumann Cycle”?

» The operations in the ALU (or “Arithmetic Logic
Unit”) part of the CPU would be ...
1. Fetch the contents of location 1024 (A)
* Putthe value into a register
2. Fetch the contents of location 1025 (B)

e Multiply it with the value (A) in the register
e Store the result (A * B) in the same register

3. Fetch the contents of location 1026 (C)
Add this value to the contents of the register (A*B+C)
4. Move the contents of the register to location 1027 (X)

Winter 2011 CISC101 - Whittaker 4

Slides courtesy of Dr. Alan McLeod

X=A*B+ C, Cont.

Naturally, these instructions have to be
communicated to the CPU in binary ...

00010000 000000000G00010000000000
00100100 §00000000000010000000001
00100011 000000000000010000000010
00010001 000000000000010000000011

byte 1 bytes 2, 3 and 4

| |

opcode operand

hwhPe

Winter 2011 CISC101 - Whittaker 5
Slides courtesy of Dr. Alan McLeod

X=A*B+C, Cont

What are these instructions in base 10?

1.16 1024
2.36 1025
3.35 1026
4.17 1027

* The operands are the memory locations

* The opcodes are 16 for load, 36 for multiply, 35
for add and 17 for store

* The default register is used
— Does not need to be specified

Winter 2011 CISC101 - Whittaker 6
Slides courtesy of Dr. Alan McLeod

Machine Language

* The 4-byte binary commands are examples of
machine language

* Normally these commands would be viewed in
base 16, or hexadecimal

1. 0x10000400
2.0x24000401
3.0x23000402
4.0x11000403

Winter 2011 CISC101 - Whittaker 7
Slides courtesy of Dr. Alan McLeod

X=A*B+C, Cont

» People have problems remembering binary codes
and even decimal codes for operations

» A “shorthand” language called Assembly
Language was introduced
— Works at a level above machine language

Winter 2011 CISC101 - Whittaker 8
Slides courtesy of Dr. Alan McLeod

X=A*B+ C, Cont.

* (Pseudo) Assembly language instructions:

1. LOAD A, ACC
2. MULT B, ACC
3. ADD C, ACC

4. STOR ACC, X

» Each assembly language keyword is translated
into its corresponding machine language code
— Done by an “interpreter” program called an Assembler

Winter 2011 CISC101 - Whittaker 9

Slides courtesy of Dr. Alan McLeod

X=A*B+ C, Cont.

* A “high-level” language goes one step above
assembly language

* In C, C++, C# or Java you would write
X=A*B+C(C;

» Python is the same, except no semi-colon
» Each high-level line of code gets translated into
many lines of assembly code

— Each line of assembly code must then be translated
into binary machine language

* Much easier to write, yes?

Winter 2011 CISC101 - Whittaker 10

Slides courtesy of Dr. Alan McLeod

Aside - A Program in C and Assembly

Here is a (very) short C program with our
calculation:

int main() {
int a=1,b=2,¢c=3,x;
Xx=a*b+c;
return O;

}

Winter 2011 CISC101 - Whittaker 11

Slides courtesy of Dr. Alan McLeod

Aside - Cont.

Here is the (real) Assembly language portion for just
thex=a*b +c; line:

mov Oxfffffffc(%oebp),%eax

imul OXxTfffff8(%o ebp),% eax
mov Oxfffffff4(%oebp),%edx

add %eax,%edx

mov %edx,OxfffffffO(%ebp)

Winter 2011 CISC101 - Whittaker 12

Slides courtesy of Dr. Alan McLeod

Computer Languages - Cont.

» Each assembly language command is translated
into several machine language commands

* The next generation of computer languages went
up one more level
— Got closer to something readable
— e.g., Fortran, Cobol and Lisp

* These languages led to an explosion of over 200
languages being developed in the 60s and 70s
— e.g., Basic, Pascal, C, Ada and Smalltalk

» Python is a relative newcomer, arriving on the
scene in the early 90s

Winter 2011 CISC101 - Whittaker 13

Slides courtesy of Dr. Alan McLeod

History of Python

* The language was created by Guido van Rossum
at Stichting Mathematisch Centrum in the
Netherlands in the early 90s

* He is still very involved with the
language
» Retains the title BDFL
» Benevolent Dictator for Life

* Python is named after “Monty
Python”, not the snake!

Winter 2011 CISC101 - Whittaker 14

Slides courtesy of Dr. Alan McLeod

History of Python - Cont.

* He wanted to make the language

— easy and intuitive
e ... but just as powerful as major competitors

— Open source
¢ anyone can contribute to its development

— use code that is as understandable as plain English
— to be suitable for everyday tasks

» First released in 1994, the language was inspired
by Modula-3, Lisp, SETL, Haskell, Icon and Java

— A compilation of the “Best-Of’'s” from many other
languages!

Winter 2011 CISC101 - Whittaker 15

Slides courtesy of Dr. Alan McLeod

Features of Python

High Level

— Most notable are the built-in data structures
Object Oriented

— OOP helps you to build code in a modular way

— Python allows you to write code without knowing
anything about OOP!

Scalable

— Packaging of code allows even very large programming
projects to be manageable

Extensible

— You can easily use external code modules written in
Python, C, C++, C#, Java or Visual Basic

Winter 2011 CISC101 - Whittaker 16

Slides courtesy of Dr. Alan McLeod

Features of Python - Cont.

Portable
— Runs on any platform/OS combination that can run C
Easy to Learn (!)

— Relatively few keywords, simple language structure and
clear syntax

— OOP can be avoided while learning

Easy to Read

— Much less punctuation than other languages
— Forces you to use good indentation

Easy to Maintain

— Results from the two above features!

Winter 2011 CISC101 - Whittaker 17

Slides courtesy of Dr. Alan McLeod

Features of Python - Cont.

Robust

— Exception handlers and safe, sane and informative
crashes

Good for Rapid Prototyping

— Often used with other languages to create prototypes
and provide a testing platform

Built-In Memory Management
— Like Java; avoids a major problem in C/C++
Interpreted

— Not compiled; each command is executed as it is read
from the program

— Speed is increased using byte-compiled files (like Java)

Winter 2011 CISC101 - Whittaker 18

Slides courtesy of Dr. Alan McLeod

Compiled vs. Interpreted Languages

» Compilation means that the machine code
translation of a program must be created
completely before the program is run

» This machine code is usually saved in a file

— e.g., an executable (*.exe) or some kind of compiled
library of code (*.dll)

» Advantage: these programs can run very quickly
— Little or no translation is required

» Disadvantage: the editing/testing/debugging loop
takes longer

» Languages like C and C++ are compiled

Winter 2011 CISC101 - Whittaker 19

Slides courtesy of Dr. Alan McLeod

Compiled vs. Interpreted Languages - Cont.

* When a program in an interpreted language is
run, the machine code is generated and executed
one line at a time

* No machine code is saved as a file

» Advantage: ease of development and testing
— Better productivity
» Disadvantage: speed

— Interpreted code can be up to 10 times slower than
compiled

— Longer execution times

Winter 2011 CISC101 - Whittaker 20

Slides courtesy of Dr. Alan McLeod

Compiled vs. Interpreted Languages - Cont.

* A modern trend is to have interpreted languages
create a file that is partially compiled
— A byte code file

» This speeds up execution without giving up any of
the advantages of using an interpreter

» Python can, and Java does, work this way

* C, C++ and Java programs often run faster than
Python programs

— Many computing-intensive Python operations are
“farmed” out to libraries written in C

Winter 2011 CISC101 - Whittaker 21

Slides courtesy of Dr. Alan McLeod

Python!

* When you see the Python prompt

>>>

you know you are speaking directly to the
interpreter

* If you want to store your commands in a file that
can be edited without retyping everything, create
a script or program

» The program can be easily fed to the interpreter
— Executes it one line at a time

Winter 2011 CISC101 - Whittaker 22

Slides courtesy of Dr. Alan McLeod

Python Demos

* First one: Ritual!
—“Hello World” at the command prompt
—“Hello World” in a script (or “program”)
—“Hello World” in a function in a program
—Jazz it up a bit:
* Add a comment or two
» Get some input from the user

» Second one: triangle calculation

Winter 2011 CISC101 - Whittaker 23

Slides courtesy of Dr. Alan McLeod

Triangle Calculator Demo

» A program that obtains two numbers from the
user and then returns the side length of the third
side of a right angle triangle

a c=,a*+b?

b

Winter 2011 CISC101 - Whittaker 24

Slides courtesy of Dr. Alan McLeod

Built-In Functions

Also known as BIFs

Named pieces of code provided by Python
— Accomplish fundamental and common tasks

— Used or invoked by "calling their names”
What do some of the BIFs do?

— Write output to the screen (e.g., print())

— Convert data from one type to another

— ... and more

Often provide data for functions inside ()

— These parameters are separated by commas

Winter 2011 CISC101 - Whittaker 25

Slides courtesy of Dr. Alan McLeod

Literal Values and Data Types

» A literal value is a specific data value
— The value of the data is “literally” itself
- e.g., 42, 3.1416, “Monty Python”, True, ...
 Literals must be one of several data types
—int
— float
— str
— bool (only possible values are True or False)
— ... and some others we’ll see later

Winter 2011 CISC101 - Whittaker 26

Slides courtesy of Dr. Alan McLeod

Numeric Types

* The int type is an integer (no decimal or
exponent) and there is no limit to its size

* The float type is characterized by a decimal
place and/or an exponent
— Itis limited to about 17 digits

* (We won't use the complex type much!)

Winter 2011 CISC101 - Whittaker 27

Slides courtesy of Dr. Alan McLeod

Other Bases

* Normally we view numbers in base 10, or in a
radix of 10
— That's the default in Python

e How can you view numbers in base 2, 8 or 167
» Use prefixes Ob, 0o or Ox on literals

» Use the BIFs bin() ,oct() and hex()

Winter 2011 CISC101 - Whittaker 28

Slides courtesy of Dr. Alan McLeod

Sequence Types

» The str type represents a sequence of
characters enclosed in ...
— single quotes
— double quotes
— three single quotes
— three double quotes

» We'll look at other sequence types (e.g., list
tuple) later in the class

Winter 2011 CISC101 - Whittaker 29

Slides courtesy of Dr. Alan McLeod

Variables

* What is a variable anyways?

* In Python, variables are created by an assignment
statement (or in function parameter lists)

» A variable takes the type of the value being
assigned to it when the program runs

» Avariable’s value can change at any time

» Can a variable change its type at any time in
Python? Yes!

Winter 2011 CISC101 - Whittaker 30

Slides courtesy of Dr. Alan McLeod

Assigning/Creating a Variable

* In code:
myVal =20

* Now myVal refers to some location in RAM that
stores the int type value 20

* We don’'t have to worry about what the actual
memory address is!

Winter 2011 CISC101 - Whittaker 31

Slides courtesy of Dr. Alan McLeod

Variable Naming Syntax Rules

» Variable names are case sensitive

* You can’t use a Python keyword for a variable
name

* No spaces!

» Start with a letter (use lower case, by convention)
— Can also use underscore _

e The rest of the name can contain numbers, letters
or the underscore
— No spaces ! (oops | said that already!)

Winter 2011 CISC101 - Whittaker 32

Slides courtesy of Dr. Alan McLeod

Variable Naming Style Rules Keywords

» Use descriptive names * Words used by Python for specific purposes
» Capitalize successive words in a name — Considered part of the Python language
— Use camelCase —e.g., if ,while ,import , ...

No limit to the length of a variable name ...
- ! i I

... but don.t write an essay... _ test conditions
Don’t use single letter variable names _ perform tasks repetitively

— Exception: a loop counter that has no intrinsic meaning _ use other Python functions
— Thenyou canusei,j ork

» Used to construct programs that can ...

— ... and more!

» Can not use keywords as variable names

Winter 2011 CISC101 - Whittaker 33 Winter 2011 CISC101 - Whittaker 34
Slides courtesy of Dr. Alan McLeod Slides courtesy of Dr. Alan McLeod
Arithmetic Operators / or Division
* Aslisted in Lab 1: * For example, what is the valueof 1 /3 ?
+ addition
. . 0.3333333333333333
- subtraction (and unary negation)
* multiplication « In previous versions of Python the result of int
/ division divided by int would be an int
/["floor" division — Not any more!
% modulo or "remainder” — Now the result is a float

** exponentiation or "to the power of"

* The first four make sense, how do the last three
work?

Winter 2011 CISC101 - Whittaker 35 Winter 2011 CISC101 - Whittaker 36

Slides courtesy of Dr. Alan McLeod Slides courtesy of Dr. Alan McLeod

/[or Integer or “Floor” Division

e Whatisthevalueof1//3 ?

0

* The result is always truncated, not rounded
—S099//100 is also zero

* You still get the truncated value, even if one or the
other numbers are float s

—-S01.0//3.0 is still 0.0

Winter 2011 CISC101 - Whittaker 37

Slides courtesy of Dr. Alan McLeod

%or “Modulo”

» Always gives the remainder after division

* Forexample 20% 3 is 2
—int values yield anint result

e Also works with float s
— Result is a float

Winter 2011 CISC101 - Whittaker 38

Slides courtesy of Dr. Alan McLeod

** or “To the Power Of”

* Example:5** 2 is 25
* |f both numbers are int s, the result is an int

— You can generate some pretty large int values this
way!

— Example: 5* 100 is 78886090522101180541172
85652827862296732064351090230047702789306
640625

» |f at least one number is a float , the answer is a
float

— S0 5.0 ** 100 is 7.888609052210118e+69

Winter 2011 CISC101 - Whittaker 39

Slides courtesy of Dr. Alan McLeod

Mixed Numeric Types

* If you have an expression like
aval =4+5- 2.0
the result will always be a float
— 7.0 in this case.

» So, if you get any float values in an expression

that has integers the result will always be a
float

— Example: 4+10/5 gives 6.0

Winter 2011 CISC101 - Whittaker 40

Slides courtesy of Dr. Alan McLeod

Strings and Numbers

* Multiplication

5 * ‘abc’ is ‘abcabcabcabcabc’

» The other numeric operators will not work with
strings

Winter 2011 CISC101 - Whittaker 41

Slides courtesy of Dr. Alan McLeod

Addition and Strings

» The + sign not only adds numbers but can also
concatenate strings (and collections)

e Shall we try it out?

* You can concatenate a number to a string, but
you have to convert it to a string first using the
str() BIF

Winter 2011 CISC101 - Whittaker 42

Slides courtesy of Dr. Alan McLeod

Precedence Rules

» Suppose | have an expression like:
a=5*b+27/c

* How do we know the order of operations?

** first, then - (as unary negation), then *,/, //
and %, then + and -, and then =

* These rules are built-in to the interpreter
— = is always last (why?)

Winter 2011 CISC101 - Whittaker 43

Slides courtesy of Dr. Alan McLeod

Precedence Rules - Cont.

* Rules again:

**

- (unary)
*[1 %
+ -

__ All operators on the same
line have equal precedence.

Winter 2011 CISC101 - Whittaker 44

Slides courtesy of Dr. Alan McLeod

Precedence Rules - Cont.

* How can you take over control of the order of
operations? Use the round brackets!

» Example: (4+5)// 3 is 3
while 4 +5// 3 is 5

» What if you have a series of operators that have
equal precedence and no brackets to control
things?

— The expression is evaluated from left to right

Winter 2011 CISC101 - Whittaker 45

Slides courtesy of Dr. Alan McLeod

Indentation

* Press the <tab> key to get an indent in your code,
if you need one

» Use the <Backspace> key to get out of an
indentation

* Don’t type spaces for indents!

* Indents are very important in Python, they are not
just “whitespace”!

» IDLE starts indentation automatically, especially
after you type a :

Winter 2011 CISC101 - Whittaker 46

Slides courtesy of Dr. Alan McLeod

Using theprint() BIF

» Writes the given values on the screen

* You can supply any number of parameters to the
function by supplying a comma-separated list of
parameters inside the brackets
— May also include no parameters at all

» Parameters can be variables or literal values

— Or values supplied by some other function

+ Comma-separated values are printed together

separated by a space, by default

* What are two ways to avoid this behaviour?

Winter 2011 CISC101 - Whittaker 47
Slides courtesy of Dr. Alan McLeod

Escape Characters

* Can be used to control how strings are displayed
when using the print() function

e See table 2-7 in the textbook
\n - linefeed
\t - tab character
\" —single quote
\" —double quote
\\ - backslash

— You can also use triple quotes to create a multi-
line string without using escape characters

Winter 2011 CISC101 - Whittaker 48
Slides courtesy of Dr. Alan McLeod

Some Punctuation ...

» Comments start with the pound sign #
* Long lines can be continued using \

* Put a lower case r in front of a string literal to get
a “raw string”

— Escape characters will not format the string in this case

Winter 2011 CISC101 - Whittaker 49

Slides courtesy of Dr. Alan McLeod

