
CISC101 Reminders & Notes

• Discussion: lab and tutorial sections

• Labs and tutorials start tomorrow
– Meet your TA
– Work on the lab for Week 2

Slides courtesy of Dr. Alan McLeod

– TAs can answer questions

• Assignment 1 has been posted

Winter 2011 CISC101 - Whittaker 1

Today

• How can we tell the CPU what to do?

• Where Python comes from

• Language fundamentals

Slides courtesy of Dr. Alan McLeod

• Language fundamentals

Winter 2011 CISC101 - Whittaker 2

Commanding the Processor

• Suppose we want the processor to carry out an
operation
– X = A * B + C

• Assume we have used some other operations to
put numbers in three memory locations in RAM

is at address

Slides courtesy of Dr. Alan McLeod

– A is at address 1024

– B is at address 1025

– C is at address 1026

• We want the result to go into memory location
1027 for X

Winter 2011 CISC101 - Whittaker 3

X = A * B + C

• Remember the “von Neumann Cycle”?
• The operations in the ALU (or “Arithmetic Logic

Unit”) part of the CPU would be ...
1. Fetch the contents of location 1024 (A)

• Put the value into a register

2. Fetch the contents of location 1025 (B)

Slides courtesy of Dr. Alan McLeod

2. Fetch the contents of location 1025 (B)
• Multiply it with the value (A) in the register
• Store the result (A * B) in the same register

3. Fetch the contents of location 1026 (C)
• Add this value to the contents of the register (A * B + C)

4. Move the contents of the register to location 1027 (X)

Winter 2011 CISC101 - Whittaker 4

X = A * B + C, Cont.

Naturally, these instructions have to be
communicated to the CPU in binary ...

1. 00010000 000000000000010000000000

2. 00100100 000000000000010000000001

3. 00100011 000000000000010000000010

Slides courtesy of Dr. Alan McLeod

3. 00100011 000000000000010000000010

4. 00010001 000000000000010000000011

byte 1 bytes 2, 3 and 4

operandopcode

Winter 2011 CISC101 - Whittaker 5

X = A * B + C, Cont

• What are these instructions in base 10?

1. 16 1024

2. 36 1025

3. 35 1026

4. 17 1027

Slides courtesy of Dr. Alan McLeod

• The operands are the memory locations
• The opcodes are 16 for load, 36 for multiply, 35

for add and 17 for store
• The default register is used

– Does not need to be specified

Winter 2011 CISC101 - Whittaker 6

Machine Language

• The 4-byte binary commands are examples of
machine language

• Normally these commands would be viewed in
base 16, or hexadecimal

1. 0x10000400

Slides courtesy of Dr. Alan McLeod

1. 0x10000400

2.0x24000401

3.0x23000402

4.0x11000403

Winter 2011 CISC101 - Whittaker 7

X = A * B + C, Cont

• People have problems remembering binary codes
and even decimal codes for operations

• A “shorthand” language called Assembly
Language was introduced
– Works at a level above machine language

Slides courtesy of Dr. Alan McLeod

Winter 2011 CISC101 - Whittaker 8

X = A * B + C, Cont.

• (Pseudo) Assembly language instructions:

1. LOAD A, ACC

2. MULT B, ACC

3. ADD C, ACC

Slides courtesy of Dr. Alan McLeod

4. STOR ACC, X

• Each assembly language keyword is translated
into its corresponding machine language code

– Done by an “interpreter” program called an Assembler

Winter 2011 CISC101 - Whittaker 9

X = A * B + C, Cont.

• A “high-level” language goes one step above
assembly language

• In C, C++, C# or Java you would write

X = A * B + C;

• Python is the same, except no semi-colon

Slides courtesy of Dr. Alan McLeod

• Python is the same, except no semi-colon
• Each high-level line of code gets translated into

many lines of assembly code
– Each line of assembly code must then be translated

into binary machine language

• Much easier to write, yes?
Winter 2011 CISC101 - Whittaker 10

Aside - A Program in C and Assembly

Here is a (very) short C program with our
calculation:

int main() {

int a = 1, b = 2, c = 3, x;

Slides courtesy of Dr. Alan McLeod

int a = 1, b = 2, c = 3, x;

x = a * b + c;

return 0;

}

Winter 2011 CISC101 - Whittaker 11

Aside - Cont.

Here is the (real) Assembly language portion for just
the x = a * b + c; line:

mov 0xfffffffc(%ebp),%eax

imul 0xfffffff8(% ebp),% eax

Slides courtesy of Dr. Alan McLeod

imul 0xfffffff8(% ebp),% eax

mov 0xfffffff4(%ebp),%edx

add %eax,%edx

mov %edx,0xfffffff0(%ebp)

Winter 2011 CISC101 - Whittaker 12

Computer Languages - Cont.

• Each assembly language command is translated
into several machine language commands

• The next generation of computer languages went
up one more level
– Got closer to something readable

Slides courtesy of Dr. Alan McLeod

– e.g., Fortran, Cobol and Lisp

• These languages led to an explosion of over 200
languages being developed in the 60s and 70s
– e.g., Basic, Pascal, C, Ada and Smalltalk

• Python is a relative newcomer, arriving on the
scene in the early 90s

Winter 2011 CISC101 - Whittaker 13

History of Python

• The language was created by Guido van Rossum
at Stichting Mathematisch Centrum in the
Netherlands in the early 90s

• He is still very involved with the
language

Slides courtesy of Dr. Alan McLeod

• Retains the title BDFL
• Benevolent Dictator for Life

• Python is named after “Monty
Python”, not the snake!

Winter 2011 CISC101 - Whittaker 14

History of Python - Cont.

• He wanted to make the language
– easy and intuitive

• … but just as powerful as major competitors

– open source
• anyone can contribute to its development

– use code that is as understandable as plain English

Slides courtesy of Dr. Alan McLeod

– use code that is as understandable as plain English
– to be suitable for everyday tasks

• First released in 1994, the language was inspired
by Modula-3, Lisp, SETL, Haskell, Icon and Java
– A compilation of the “Best-Of’s” from many other

languages!

Winter 2011 CISC101 - Whittaker 15

Features of Python

• High Level
– Most notable are the built-in data structures

• Object Oriented
– OOP helps you to build code in a modular way
– Python allows you to write code without knowing

anything about OOP!

Slides courtesy of Dr. Alan McLeod

anything about OOP!

• Scalable
– Packaging of code allows even very large programming

projects to be manageable

• Extensible
– You can easily use external code modules written in

Python, C, C++, C#, Java or Visual Basic

Winter 2011 CISC101 - Whittaker 16

Features of Python - Cont.

• Portable
– Runs on any platform/OS combination that can run C

• Easy to Learn (!)
– Relatively few keywords, simple language structure and

clear syntax
– OOP can be avoided while learning

Slides courtesy of Dr. Alan McLeod

– OOP can be avoided while learning

• Easy to Read
– Much less punctuation than other languages
– Forces you to use good indentation

• Easy to Maintain
– Results from the two above features!

Winter 2011 CISC101 - Whittaker 17

Features of Python - Cont.

• Robust
– Exception handlers and safe, sane and informative

crashes

• Good for Rapid Prototyping
– Often used with other languages to create prototypes

and provide a testing platform

Slides courtesy of Dr. Alan McLeod

• Built-In Memory Management
– Like Java; avoids a major problem in C/C++

• Interpreted
– Not compiled; each command is executed as it is read

from the program
– Speed is increased using byte-compiled files (like Java)

Winter 2011 CISC101 - Whittaker 18

Compiled vs. Interpreted Languages

• Compilation means that the machine code
translation of a program must be created
completely before the program is run

• This machine code is usually saved in a file
– e.g., an executable (*.exe) or some kind of compiled

library of code (*.dll)

Slides courtesy of Dr. Alan McLeod

library of code (*.dll)

• Advantage: these programs can run very quickly
– Little or no translation is required

• Disadvantage: the editing/testing/debugging loop
takes longer

• Languages like C and C++ are compiled

Winter 2011 CISC101 - Whittaker 19

Compiled vs. Interpreted Languages - Cont.

• When a program in an interpreted language is
run, the machine code is generated and executed
one line at a time

• No machine code is saved as a file
• Advantage: ease of development and testing

Slides courtesy of Dr. Alan McLeod

– Better productivity

• Disadvantage: speed
– Interpreted code can be up to 10 times slower than

compiled
– Longer execution times

Winter 2011 CISC101 - Whittaker 20

Compiled vs. Interpreted Languages - Cont.

• A modern trend is to have interpreted languages
create a file that is partially compiled
– A byte code file

• This speeds up execution without giving up any of
the advantages of using an interpreter

Slides courtesy of Dr. Alan McLeod

• Python can, and Java does, work this way
• C, C++ and Java programs often run faster than

Python programs
– Many computing-intensive Python operations are

“farmed” out to libraries written in C

Winter 2011 CISC101 - Whittaker 21

Python!

• When you see the Python prompt

>>>

you know you are speaking directly to the
interpreter

Slides courtesy of Dr. Alan McLeod

interpreter
• If you want to store your commands in a file that

can be edited without retyping everything, create
a script or program

• The program can be easily fed to the interpreter
– Executes it one line at a time

Winter 2011 CISC101 - Whittaker 22

Python Demos

• First one: Ritual!
– “Hello World” at the command prompt
– “Hello World” in a script (or “program”)
– “Hello World” in a function in a program
– Jazz it up a bit:

Slides courtesy of Dr. Alan McLeod

– Jazz it up a bit:
• Add a comment or two
• Get some input from the user

• Second one: triangle calculation

Winter 2011 CISC101 - Whittaker 23

Triangle Calculator Demo

• A program that obtains two numbers from the
user and then returns the side length of the third
side of a right angle triangle

Slides courtesy of Dr. Alan McLeod

a

b

22 bac +=

Winter 2011 CISC101 - Whittaker 24

Built-In Functions

• Also known as BIFs
• Named pieces of code provided by Python

– Accomplish fundamental and common tasks
– Used or invoked by "calling their names”

• What do some of the BIFs do?

Slides courtesy of Dr. Alan McLeod

• What do some of the BIFs do?
– Write output to the screen (e.g., print())

– Convert data from one type to another
– … and more

• Often provide data for functions inside ()
– These parameters are separated by commas

Winter 2011 CISC101 - Whittaker 25

Literal Values and Data Types

• A literal value is a specific data value
– The value of the data is “literally” itself
– e.g., 42, 3.1416, “Monty Python”, True, …

• Literals must be one of several data types
– int

Slides courtesy of Dr. Alan McLeod

– float

– str

– bool (only possible values are True or False)

– … and some others we’ll see later

Winter 2011 CISC101 - Whittaker 26

Numeric Types

• The int type is an integer (no decimal or
exponent) and there is no limit to its size

• The float type is characterized by a decimal
place and/or an exponent

Slides courtesy of Dr. Alan McLeod

– It is limited to about 17 digits

• (We won’t use the complex type much!)

Winter 2011 CISC101 - Whittaker 27

Other Bases

• Normally we view numbers in base 10, or in a
radix of 10
– That’s the default in Python

• How can you view numbers in base 2, 8 or 16?

Slides courtesy of Dr. Alan McLeod

• Use prefixes 0b , 0o or 0x on literals

• Use the BIFs bin() , oct() and hex()

Winter 2011 CISC101 - Whittaker 28

Sequence Types

• The str type represents a sequence of
characters enclosed in …
– single quotes
– double quotes
– three single quotes
– three double quotes

Slides courtesy of Dr. Alan McLeod

– three double quotes

• We’ll look at other sequence types (e.g., list ,
tuple) later in the class

Winter 2011 CISC101 - Whittaker 29

Variables

• What is a variable anyways?

• In Python, variables are created by an assignment
statement (or in function parameter lists)

• A variable takes the type of the value being

Slides courtesy of Dr. Alan McLeod

• A variable takes the type of the value being
assigned to it when the program runs

• A variable’s value can change at any time

• Can a variable change its type at any time in
Python? Yes!

Winter 2011 CISC101 - Whittaker 30

Assigning/Creating a Variable

• In code:
myVal = 20

• Now myVal refers to some location in RAM that
stores the int type value 20

Slides courtesy of Dr. Alan McLeod

stores the int type value 20

• We don’t have to worry about what the actual
memory address is!

Winter 2011 CISC101 - Whittaker 31

Variable Naming Syntax Rules

• Variable names are case sensitive
• You can’t use a Python keyword for a variable

name
• No spaces!
• Start with a letter (use lower case, by convention)

Slides courtesy of Dr. Alan McLeod

• Start with a letter (use lower case, by convention)
– Can also use underscore _

• The rest of the name can contain numbers, letters
or the underscore
– No spaces ! (oops I said that already!)

Winter 2011 CISC101 - Whittaker 32

Variable Naming Style Rules

• Use descriptive names
• Capitalize successive words in a name

– Use camelCase

• No limit to the length of a variable name …
– … but don’t write an essay!!

Slides courtesy of Dr. Alan McLeod

– … but don’t write an essay!!

• Don’t use single letter variable names
– Exception: a loop counter that has no intrinsic meaning
– Then you can use i , j or k

Winter 2011 CISC101 - Whittaker 33

Keywords

• Words used by Python for specific purposes
– Considered part of the Python language
– e.g., if , while , import , …

• Used to construct programs that can …
– test conditions

Slides courtesy of Dr. Alan McLeod

– test conditions
– perform tasks repetitively
– use other Python functions
– … and more!

• Can not use keywords as variable names

Winter 2011 CISC101 - Whittaker 34

Arithmetic Operators

• As listed in Lab 1:
+ addition
- subtraction (and unary negation)
* multiplication
/ division

Slides courtesy of Dr. Alan McLeod

// "floor" division
% modulo or "remainder"
** exponentiation or "to the power of"

• The first four make sense, how do the last three
work?

Winter 2011 CISC101 - Whittaker 35

/ or Division

• For example, what is the value of 1 / 3 ?

0.3333333333333333

• In previous versions of Python the result of int
divided by int would be an int

Slides courtesy of Dr. Alan McLeod

– Not any more!
– Now the result is a float .

Winter 2011 CISC101 - Whittaker 36

// or Integer or “Floor” Division

• What is the value of 1 // 3 ?

0

• The result is always truncated, not rounded
– So 99 // 100 is also zero

Slides courtesy of Dr. Alan McLeod

– So 99 // 100 is also zero

• You still get the truncated value, even if one or the
other numbers are float s
– So 1.0 // 3.0 is still 0.0

Winter 2011 CISC101 - Whittaker 37

%or “Modulo”

• Always gives the remainder after division

• For example 20 % 3 is 2
– int values yield an int result

• Also works with float s

Slides courtesy of Dr. Alan McLeod

• Also works with float s
– Result is a float

Winter 2011 CISC101 - Whittaker 38

** or “To the Power Of”

• Example: 5 ** 2 is 25

• If both numbers are int s, the result is an int
– You can generate some pretty large int values this

way!
– Example: 5 ** 100 is 78886090522101180541172

85652827862296732064351090230047702789306

Slides courtesy of Dr. Alan McLeod

85652827862296732064351090230047702789306
640625

• If at least one number is a float , the answer is a
float
– So 5.0 ** 100 is 7.888609052210118e+69

Winter 2011 CISC101 - Whittaker 39

Mixed Numeric Types

• If you have an expression like
aVal = 4 + 5 – 2.0

the result will always be a float
– 7.0 in this case.

• So, if you get any float values in an expression

Slides courtesy of Dr. Alan McLeod

• So, if you get any float values in an expression
that has integers the result will always be a
float
– Example: 4 + 10 / 5 gives 6.0

Winter 2011 CISC101 - Whittaker 40

Strings and Numbers

• Multiplication

5 * ‘abc’ is ‘abcabcabcabcabc’

• The other numeric operators will not work with
strings

Slides courtesy of Dr. Alan McLeod

strings

Winter 2011 CISC101 - Whittaker 41

Addition and Strings

• The + sign not only adds numbers but can also
concatenate strings (and collections)

• Shall we try it out?

• You can concatenate a number to a string, but

Slides courtesy of Dr. Alan McLeod

• You can concatenate a number to a string, but
you have to convert it to a string first using the
str() BIF

Winter 2011 CISC101 - Whittaker 42

Precedence Rules

• Suppose I have an expression like:

a = 5 * b + 27 / c

• How do we know the order of operations?

** first, then - (as unary negation), then *, / , //

Slides courtesy of Dr. Alan McLeod

• These rules are built-in to the interpreter
– = is always last (why?)

** first, then - (as unary negation), then *, / , //
and %, then + and - , and then =

Winter 2011 CISC101 - Whittaker 43

Precedence Rules - Cont.

• Rules again:

**

- (unary)
* / // %

All operators on the same
line have equal precedence.

Slides courtesy of Dr. Alan McLeod

* / // %

+ -

=

line have equal precedence.

Winter 2011 CISC101 - Whittaker 44

Precedence Rules - Cont.

• How can you take over control of the order of
operations? Use the round brackets!

• Example: (4 + 5) // 3 is 3
while 4 + 5 // 3 is 5

Slides courtesy of Dr. Alan McLeod

while 4 + 5 // 3 is 5

• What if you have a series of operators that have
equal precedence and no brackets to control
things?
– The expression is evaluated from left to right

Winter 2011 CISC101 - Whittaker 45

Indentation

• Press the <tab> key to get an indent in your code,
if you need one

• Use the <Backspace> key to get out of an
indentation

• Don’t type spaces for indents!

Slides courtesy of Dr. Alan McLeod

• Indents are very important in Python, they are not
just “whitespace”!

• IDLE starts indentation automatically, especially
after you type a :

Winter 2011 CISC101 - Whittaker 46

Using the print() BIF

• Writes the given values on the screen
• You can supply any number of parameters to the

function by supplying a comma-separated list of
parameters inside the brackets
– May also include no parameters at all

Slides courtesy of Dr. Alan McLeod

• Parameters can be variables or literal values
– Or values supplied by some other function

• Comma-separated values are printed together
separated by a space, by default

• What are two ways to avoid this behaviour?

Winter 2011 CISC101 - Whittaker 47

Escape Characters

• Can be used to control how strings are displayed
when using the print() function

• See table 2-7 in the textbook
\n - linefeed
\t – tab character

Slides courtesy of Dr. Alan McLeod

\’ – single quote
\” – double quote
\\ - backslash

– You can also use triple quotes to create a multi-
line string without using escape characters

Winter 2011 CISC101 - Whittaker 48

Some Punctuation …

• Comments start with the pound sign #

• Long lines can be continued using \

• Put a lower case r in front of a string literal to get
a “raw string”

Slides courtesy of Dr. Alan McLeod

a “raw string”
– Escape characters will not format the string in this case

Winter 2011 CISC101 - Whittaker 49

