
Consider the following Python program: 

message = "The result is" 

def sum(num1, num2): 
sumResult = num1 + num2 
return sumResult

def squareSum(val1, val2): 
squareResult = sum(val1, val2) 
squareResult = squareResult ** 2 
return squareResult

def main(): 
result = squareSum(2, 3) 
print(message, result) 

main() 

When the Python interpreter runs this program, what is the sequence of commands executed? 



Run Program With the 
Python Interpreter

message = "The result is" 

main()

In Function 
main()

result = squareSum(2, 3) 

In Function 
squareSum(2, 3) 

squareResult = sum(val1, val2) 

Call main()

Call squareSum(2, 3) 

squareResult = sum(val1, val2) 

squareResult = sum(2, 3) 

Substitute the values of val1 and val2

In Function 
sum(2, 3) 

Call sum(2, 3) 

sumResult = num1 + num2 

sumResult = 2 + 3 

Substitute the values of num1 and num2

sumResult = 5

Evaluate 2 + 3



Back In Function 
squareSum(2, 3) 

squareResult = 5 

return sumResult

return 5

Substitute the value of  sumResult

Send the value 5 back to the caller

squareResult = squareResult ** 2 

squareResult = 5 ** 2 

Substitute the value of squareResult

Back In Function 
main()

squareResult = 25 

Evaluate 5 ** 2

return squareResult

Send the value 25 back to the caller

result = 25 

return 25

Substitute the value of squareResult



No value is sent back 

In Function print("The 
result is", 25)

The arguments are 
printed on the screen

Back In Function 
main()

Program Is 
Finished

print("The result is", 25)

Substitute the values of message and result

Call print("The result is", 25)

No value is sent back 

print(message, result)

Now consider the following shorter version of the previous program: 

message = "The result is" 

def sum(num1, num2):
return num1 + num2

def squareSum(val1, val2):
return sum(val1, val2) ** 2

def main(): 
print(message, squareSum(2, 3)) 

main() 

When the Python interpreter runs this program, what is the sequence of commands executed? 



Run Program With 
Python Interpreter

message = "The result is" 

main()

In Function 
main()

print(message, squareSum(2, 3))

In Function 
squareSum(2, 3) 

Call main()

Call squareSum(2, 3) 

return sum(val1, val2) ** 2

return sum(2, 3) ** 2

Substitute the values of val1 and val2

In Function 
sum(2, 3) 

Call sum(2, 3) 

return num1 + num2 

return 2 + 3

Substitute the values of num1 and num2



Back In Function 
main()

Back In Function 
squareSum(2, 3) 

return 5 ** 2

Send the value 5 back to the caller

return 25 

Evaluate 5 ** 2

Send the value 25 back to the caller

return 5

Evaluate 2 + 3

print(message, 25)

No value is sent back 

In Function print("The 
result is", 25)

The arguments are 
printed on the screen

Back In Function 
main()

Program Is 
Finished

print("The result is", 25)

Substitute the value of message

Call print("The result is", 25)

No value is sent back 



What are the variables in this Python program and where are they defined? 

message = "The result is" 

def sum(num1, num2): 
sumResult = num1 + num2 
return sumResult

def squareSum(val1, val2): 
squareResult = sum(val1, val2) 
squareResult = squareResult ** 2 
return squareResult

def main(): 
result = squareSum(2, 3) 

Parameter num1 Parameter num2 Declared sumResult

Parameter val1 Parameter val2 Declared squareResult

Declared result

Declared message

print(message, result) 

main() 

The function sum(...) has three local variables that only exist in sum(...): parameters num1 and num2, and 
declared variable sumResult.  These variables can not be used in any function other than sum(...); their scope is 
their function,  represented here by the grey rectangle around sum(...) .

Think of these variables as having a “local scope rule” implicitly attached to their names: num1only exists in sum(...), 
num2only exists in sum(...) and sumResultonly exists in sum(...).  These attachments aren’t actually used in Python; 

they’re imaginary devices used here to illustrate a variable’s scope.

The function squareSum(...) has its own local variables: parameters val1 and val2, as well declared variable 
squareResult. The function main() has one local declared variable: result.



Now consider introducing the following bug in main():

def main():
result = squareSum(2, 3)
print("The values are", num1, "and", num2)
print(message, result)

The bug may not be obvious here.  Try attaching the "local scope rule" to the variable names for result, num1 and 
num2:

def main():
resultonly exists in main() = squareSum(2, 3)
print("The values are", num1only exists in sum(...), "and", num2only exists in sum(...))
print(message, resultonly exists in main())

The bug becomes more clear now: the main() function is attempting to use variables that only exist in the function 
.  But why isn't this a problem with variable ? It's being used in without issue.sum(...).  But why isn't this a problem with variable message? It's being used in main() without issue.

The variable message is a global variable; it is not declared inside any function. This means that message can be used 
everywhere and its scope is the entire program. In this case it's only used in main(), but it could also be used in 
sum(...) or squareSum(...) or both. Think of this variable as having a “global scope rule” implicitly attached to its 
name: message exists everywhere.  If you attached all the “scope rules” to the variable names in main() it would look 

like this:

def main():
resultonly exists in main() = squareSum(2, 3)
print(messageexists everywhere, resultonly exists in main())



What if the variable names are changed? 

message = "The result is" 

def sum(num1, num2): 
result = num1 + num2 
return result 

def squareSum(num1, num2): 
result = sum(num1, num2) 
result = result ** 2 
return result 

def main(): 
result = squareSum(2, 3) 

Parameter num1 Parameter num2 Declared result

Parameter num1 Parameter num2 Declared result

Declared result

Declared message

print(message, result) 

main() 

Even though many of the variables have the same names, the program operates in exactly the same way.  There are still 
three independent sets of local variables, listed below with their “scope rules” attached to distinguish between them:

• num1only exists in sum(...), num2only exists in sum(...) and resultonly exists in sum(...) local to function 
sum(...)
• num1only exists in squareSum(...), num2only exists in squareSum(...) and resultonly exists in squareSum(...) local 
to function squareSum(...)
• resultonly exists in main() local to function main()

There are two separate variables in this program with name num1, two separate variables with name num2, and three 
separate variables with name result.  A function can only use its own local variables and any global variables; it can 
not use variables from other functions, even if they have the same names.


