
Today

• File I/O from last time
– Slides 38-48

• The os and sys modules
• The exec(…) BIF

• Confirming parameter types

Slides courtesy of Dr. Alan McLeod

• Confirming parameter types
– Revisit raising exceptions

• Passing by reference
• Lists of lists and dictionaries
• Finding minimums and maximums
• Timing code execution

Winter 2011 CISC101 - Whittaker 1

os Module

• Behind the scenes, this module loads a module 
for your particular operating system

• Regardless of your actual OS, Python imports os

– See Section 15.1 in the Python Library Reference

Slides courtesy of Dr. Alan McLeod

• Lots of goodies, particularly file system utilities
– e.g., os.sep is the directory separator for your OS

• The next few slides have a selection of file-related 
functions

Winter 2011 CISC101 - Whittaker 2

os Module - Cont.

• remove(…) Deletes a file
• rename(…) Renames a file
• walk(…) Generates filenames in a directory 

tree (generator object)
• chdir (…) Changes the working directory

Slides courtesy of Dr. Alan McLeod

• chdir (…) Changes the working directory
• chroot(…) Changes root directory of current 

process in Unix
• listdir(…) Lists files and folders in a directory

Winter 2011 CISC101 - Whittaker 3

os Module - Cont.

• getcwd() Gets the current working directory
• mkdir(…) Creates a directory
• rmdir(…) Removes a directory
• access(…) Verify permission modes
• chmod(…) Changes permission modes

Slides courtesy of Dr. Alan McLeod

• chmod(…) Changes permission modes

Winter 2011 CISC101 - Whittaker 4



os.path Module

• basename(…) Returns the name of a file
• dirname(…) Returns the name of a directory
• join(…) Joins a directory and a filename
• split(…) Splits a path into a directory and 

a filename (a tuple)

Slides courtesy of Dr. Alan McLeod

• splitext(…) Returns filename and extension 
as tuple

• getatime(…) Returns last file access time
• getctime(…) Returns file creation time

Winter 2011 CISC101 - Whittaker 5

os.path Module – Cont.

• getmtime(…) Returns file modification time
• getsize(…) Returns file size in bytes
• exists(…) Does file or directory name exist?
• isdir(…) Is this a directory name and does 

it exist?

Slides courtesy of Dr. Alan McLeod

it exist?
• isfile(…) Is this a file and does it exist?

Winter 2011 CISC101 - Whittaker 6

os Module - Demo

• LargeFileSearch.py

• Uses a recursive directory search
– Don’t worry about this technique
– You are not responsible for knowing how to use 

Slides courtesy of Dr. Alan McLeod

– You are not responsible for knowing how to use 
recursion … yet

Winter 2011 CISC101 - Whittaker 7

os Module - Cont.

• The os module also has many commands that 
allow you to run other non-Python code and 
programs from within your program
– e.g., os.system() allows you to run a system 

command (such as a DOS command)

Slides courtesy of Dr. Alan McLeod

Winter 2011 CISC101 - Whittaker 8



Aside – the exec() BIF

• Also in os module 

• Can execute Python code if it is supplied to the 
BIF as a string
– The string could come from a file, for example

Slides courtesy of Dr. Alan McLeod

• Demo: RemoteFileExecution.py

Winter 2011 CISC101 - Whittaker 9

sys Module

• See Section 27.1 in the Python Library Reference
• Contains more system functions and attributes

– A small sampling is provided here

• argv
– A list of all command line parameters sent to the 

Slides courtesy of Dr. Alan McLeod

– A list of all command line parameters sent to the 
interpreter

• builtin_module_names
– A list of all built-in modules

• exit(0)
– Immediately exits a Python program giving a zero exit 

status code

Winter 2011 CISC101 - Whittaker 10

sys Module - Cont.

• getwindowsversion()

– Returns a tuple consisting of major, minor, build, 
platform, and service pack status

• path 

– A list of the module search paths used by Python

• platform 

Slides courtesy of Dr. Alan McLeod

• platform 

– The current OS platform

• prefix 

– The folder where Python is located

• version 

– The version of Python being used
Winter 2011 CISC101 - Whittaker 11

The isinstance(…) BIF

• When you get an argument value mapped to a 
parameter, how do you know it is the right type?

• The function assumes that the function is invoked 
with the proper types

• But should you check, and how can you?
• Suppose you have a parameter called param and 

Slides courtesy of Dr. Alan McLeod

• Suppose you have a parameter called param and 
it is supposed to be a string

isinstance(param, str)

will return True , False otherwise

Winter 2011 CISC101 - Whittaker 12



isinstance(…) - Cont.

• What other types can you check?
– bool

– int float complex

– str

– list tuple set dict range

Slides courtesy of Dr. Alan McLeod

– list tuple set dict range

• Many other types exist in Python
– You can have an object type as well

Winter 2011 CISC101 - Whittaker 13

Raising Exceptions - Revisited

• So, what do you in your function if your parameter 
type is not correct?

• Demo: RaiseExceptionIsInstance.py

Slides courtesy of Dr. Alan McLeod

Winter 2011 CISC101 - Whittaker 14

Passing by Reference

• Can a function change something in its parameter 
list and have the change stay (or “stick”) when the 
function is done?

• What kinds of parameters can be changed and 

Slides courtesy of Dr. Alan McLeod

how?

• Demo: TestPassingByReference.py

Winter 2011 CISC101 - Whittaker 15

Passing by Reference - Observations

• Immutable objects do not stay changed outside 
the function
– That’s the int , the string and the tuple

– All you can do inside the function is assign a new value 
to the parameter

• Re-assigning a mutable object does not change it

Slides courtesy of Dr. Alan McLeod

• Re-assigning a mutable object does not change it
• However, some actions allow the changes to stay 

after the function is complete
– Element-by-element changes using the slice operator
– Invoking a method belonging to a list

Winter 2011 CISC101 - Whittaker 16



Passing by Reference - Cont.

• When you pass a list (or any object) into a 
function, you do not re-create the entire structure 
inside the function
– That would be wasteful and time-consuming!

• Instead you just pass a reference (a memory 
address, or “pointer”) into the function

Slides courtesy of Dr. Alan McLeod

address, or “pointer”) into the function
• If the object is mutable, and its elements are 

changed or deleted inside the function, then that 
change is made to the structure created outside 
the function

Winter 2011 CISC101 - Whittaker 17

Passing by Reference - Cont.

• We can take advantage of being able to pass 
mutable objects (especially lists) by reference to 
simplify code!

• This also gives you a way to get more than one 
thing out of a function without having to return a 
tuple of lists

Slides courtesy of Dr. Alan McLeod

tuple of lists
– But, if you are doing this maybe your function is not just 

doing one thing!
– And, returning multiple things through the parameter 

list can make for confusing code

Winter 2011 CISC101 - Whittaker 18

Lists of Lists

• We know a list can hold anything
– The elements do not even have to be the same type

ex1 = [1, 4.0, ‘abc’, 2, ‘hello!’]

Slides courtesy of Dr. Alan McLeod

• So, there is no reason that an element cannot be 
another list (or a tuple, or some other collection)

ex2 = [4.5, [1, 2, ‘abc’], 7, ‘hello’]

Winter 2011 CISC101 - Whittaker 19

Lists of Lists - Example

>>> for value in ex2:

print(value)

4.5

[1, 2, ' abc ']

Slides courtesy of Dr. Alan McLeod

[1, 2, ' abc ']

7

hello

Winter 2011 CISC101 - Whittaker 20



Lists of Lists - Cont.

• How can I display the elements in the list at 
position 1?

>>> for value in ex2[1]:

print(value)

Slides courtesy of Dr. Alan McLeod

print(value)

1

2

abc

Winter 2011 CISC101 - Whittaker 21

Lists of Lists - Cont.

• Nothing new!
• How do I access just the 'abc' string inside the 

list at position 1?

>>> ex2[1][2] = ' wxyz '

Slides courtesy of Dr. Alan McLeod

>>> ex2[1][2] = ' wxyz '

>>> ex2

[4.5, [1, 2, 'wxyz'], 7, 'hello']

Winter 2011 CISC101 - Whittaker 22

Lists of Lists - Cont.

• A list of lists can be used represent tabular data

• Suppose you wish to store people’s names, ages 
and student numbers?

Slides courtesy of Dr. Alan McLeod

ex3 = [['Sam', 18, 4445555], ['Boris', 21, 
5554444], ['Ben', 19, 5445444]]

• You could do it this way, or (better yet) use a 
dictionary

Winter 2011 CISC101 - Whittaker 23

Dictionaries – An Example
>>> name1 = {'name':'Sam', 'age':18, 'SN':4445555}

>>> name2 = {'name':'Boris', 'age':21, 'SN':5554444 }

>>> name3 = {'name':'Ben', 'age':19, 'SN':5445444}

>>> allNames = [name1, name2, name3]

>>> allNames

[{'age': 18, 'name': 'Sam', 'SN': 4445555}, {'age':  
21, 'name': 'Boris', 'SN': 5554444}, {'age': 19, 

Slides courtesy of Dr. Alan McLeod

21, 'name': 'Boris', 'SN': 5554444}, {'age': 19, 
'name': 'Ben', 'SN': 5445444}]

>>> allNames[2]['age']

19

>>> allNames[1]['name']

'Boris'

Winter 2011 CISC101 - Whittaker 24



Dictionaries – Better Yet
>>> allNames = {}

>>> allNames['Sam'] = {'age':18, 'SN':4445555}

>>> allNames['Boris'] = {'age':21, 'SN':5554444}

>>> allNames['Ben'] = {'age':19, 'SN':5445444}

>>> allNames

{'Boris': {'age': 21, 'SN': 5554444}, 'Ben': {'age' : 
19, 'SN': 5445444}, 'Sam': {'age': 18, 'SN': 

Slides courtesy of Dr. Alan McLeod

19, 'SN': 5445444}, 'Sam': {'age': 18, 'SN': 
4445555}}

>>> allNames['Boris']['age']

21

Winter 2011 CISC101 - Whittaker 25

Dictionaries

• Indexing in a dictionary or dict is done using key 
names, not sequential numeric index values

• It is a “mapping” type data structure

Slides courtesy of Dr. Alan McLeod

• It does not matter what the order of the 
key:value pairs is

Winter 2011 CISC101 - Whittaker 26

Dictionaries – Adding Values
• How can you add another key:value pair to a 

dictionary?

>>> name1

{'age': 18, 'name': 'Sam', 'SN': 4445555}

>>> name1['age']

Slides courtesy of Dr. Alan McLeod

18

>>> name1['sex'] = 'male'

>>> name1

{'age': 18, 'sex': 'male', 'name': 'Sam', 'SN': 
4445555}

Winter 2011 CISC101 - Whittaker 27

Dictionaries – Adding Values
• Here’s another option

>>> allNames['Boris']['sex'] = 'male'

>>> allNames['Boris']

{'age': 21, 'SN': 5554444, 'sex': 'male'}

Slides courtesy of Dr. Alan McLeod

Winter 2011 CISC101 - Whittaker 28



Dictionaries - Cont.

• Dictionary keys must be immutable and unique
– Don’t want to change your key values
– Don’t want duplicate entries

• The dictionary itself is mutable
• You can create an empty dictionary 

Slides courtesy of Dr. Alan McLeod

>>> mtDictionary = {}

• Add new key:value pairs as seen on the 
previous slides

Winter 2011 CISC101 - Whittaker 29

Dictionaries - Cont.

• A dictionary has a method called keys() that 
returns an iterable list of key values

>>> name1.keys()

dict_keys(['age', 'sex', 'name', 'SN'])

Slides courtesy of Dr. Alan McLeod

• If you use the sorted(…) BIF on a dictionary it 
returns a dictionary sorted by key
– See Section 5.5 in the Python Tutorial

Winter 2011 CISC101 - Whittaker 30

Elements in Collections

• How do you look through all the elements?
– Use a loop!

• How do you look for something specific?
– Loop through all the elements

Slides courtesy of Dr. Alan McLeod

– Loop through all the elements
– Examine each one – does it satisfy the property or 

properties you’re looking for?

Winter 2011 CISC101 - Whittaker 31

Finding Mins, Maxs and Sums

• Naturally Python has BIFs for these!

min(iter, key=None)

min(arg0, arg1, arg2, …, key=None) , 
sum(iter[, start])

Slides courtesy of Dr. Alan McLeod

• max is called in the same manner as min

• iter is a list, tuple or string
• key is optional and we won’t use it

– Points to a function that determines the order of the 
elements

Winter 2011 CISC101 - Whittaker 32



Finding Mins and Maxs - Cont.

• Sometimes you have to do this yourself
• This function returns the minimum of a simple list

def findMin(aList):

min = aList[0]
i = 1

Slides courtesy of Dr. Alan McLeod

i = 1

while i < len(aList) :

if aList[i] < min :

min = aList[i]

i = i + 1

return min

Winter 2011 CISC101 - Whittaker 33

Finding Mins and Maxs - Cont.

• Maybe you want to know the index of the 
minimum, not the value
– You’ll need to write your own function

• Using the first element in a collection is a good 
starting point for the min or max

Slides courtesy of Dr. Alan McLeod

starting point for the min or max
– You could start with some very large value for your min 

or some very small value for your max
– However, this does not make it easier and you have to 

know the range of your data or make assumptions

• Demo: FindMinMaxSum.py

Winter 2011 CISC101 - Whittaker 34

Finding Mins and Maxs - Cont.

• Note how the functions work with lists of other 
types

• Note that the built-in sum(…) works only with lists 
of numbers

Slides courtesy of Dr. Alan McLeod

– We can modify our sum to work with the other list types

Winter 2011 CISC101 - Whittaker 35

Finding Mins and Maxs in a Mix

• Suppose your list has a mix of types

>>> test = [1, 2, 'abc', 3]

>>> sum(test)

Traceback (most recent call last):

File "<pyshell#1>", line 1, in <module>

sum(test)

Slides courtesy of Dr. Alan McLeod

sum(test)

TypeError: unsupported operand type(s) for +: 'int'
and 'str'

>>> min(test)

Traceback (most recent call last):

File "<pyshell#2>", line 1, in <module>

min(test)

TypeError: unorderable types: str() < int()

Winter 2011 CISC101 - Whittaker 36



Finding Mins and Maxs in a Mix - Cont.

• Hmmmm …

• If we did this ourselves we could use 
isinstance() to check types before comparing 
or summing elements!

Slides courtesy of Dr. Alan McLeod

Winter 2011 CISC101 - Whittaker 37

Timing Code Execution

• We often need to choose code to minimize 
execution speed, but how can you tell?
– Sometimes you can predict …
– Usually you have to measure execution speed in a 

controlled experiment

Slides courtesy of Dr. Alan McLeod

• If you are going to compare the speeds of two 
algorithms, you need to compare them under the 
same conditions
– Hardware and software

Winter 2011 CISC101 - Whittaker 38

Timing Code Execution - Cont.

• Since there is such a variety of hardware and 
software platforms, all you can conclude from 
such an experiment is that one algorithm is faster 
than the other
– The absolute timing values are not much use

Slides courtesy of Dr. Alan McLeod

Winter 2011 CISC101 - Whittaker 39

Timing Code Execution - Cont.

• To measure timings, import the time module and 
use the clock() function
– Get the time before and get the time after
– Subtract the first from the second for the time elapsed

• Here is what the Python module docs have to say:

Slides courtesy of Dr. Alan McLeod

“… this is the function to use for benchmarking Python or 
timing algorithms.

On Windows, this function returns wall-clock seconds 
elapsed since the first call to this function, as a floating 
point number, based on the Win32 function 
QueryPerformanceCounter() . The resolution is 
typically better than one microsecond.”

Winter 2011 CISC101 - Whittaker 40



Timing Code Execution - Cont.

• So, just for fun, let’s compare our findMax(…)
function to the max(…) BIF

• We will have to enlarge the list so that it will take 
enough time to measure
– We can fill it with random numbers as “fodder”

Slides courtesy of Dr. Alan McLeod

• Demo: TimingFindMax.py

• Which one is slower?  Can we speed up our 
findMax(…) function?
– Note how timings change from one run to the next …

Winter 2011 CISC101 - Whittaker 41

Timing Code Execution - Cont.

• Why is the for loop much faster than the while
loop?  (Good to know!)

• Why is the BIF still faster than our fastest code?

Slides courtesy of Dr. Alan McLeod

Winter 2011 CISC101 - Whittaker 42


