
CISC101 Reminders & Notes

• Assignment 2 sample solutions are posted

• Test 2 takes place this week in tutorial

Slides courtesy of Dr. Alan McLeod

Winter 2011 CISC101 - Whittaker 1

Writing Great Programs

• Two ways to make the best programs

• Modular Programming
– Using, defining and designing functions

• Review some of what we learned earlier

Slides courtesy of Dr. Alan McLeod

• Style and Documentation
– We’ve already discussed this …
– … but there’s still more to do

Winter 2011 CISC101 - Whittaker 2

Modular Programming

• There are many layers to how code is grouped

PACKAGE

MODULE MODULE MODULE

CLASS

ATTRIBUTES

METHODS

Slides courtesy of Dr. Alan McLeod

CLASS

METHODS

FUNCTION

FUNCTION

IMPERATIVE CODE

… … …

Winter 2011 CISC101 - Whittaker 3

Operational Code

• There are three places where you can put code 
that does something
– In a function
– In a class
– Outside of functions and classes

• Imperative code

Slides courtesy of Dr. Alan McLeod

• Imperative code

Winter 2011 CISC101 - Whittaker 4



Imperative Code

• Imperative code is not inside a function or class
– Written starting in the leftmost column

• We’ve written imperative code before
– The first two programs for Assignment 1 were imperative

• We still use imperative statements occasionally

Slides courtesy of Dr. Alan McLeod

– def aFunction(…) :

– Calling main()

– etc.

• The next slide has an example of an imperative 
program

Winter 2011 CISC101 - Whittaker 5

Imperative Program or “Script”

# This is the most simple kind of program

# you can write!

for i in range(10) :

print(i, end=', ')

print(" \ nAll done!")

Slides courtesy of Dr. Alan McLeod

print(" \ nAll done!")

This script displays the following output:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 

All done!
Winter 2011 CISC101 - Whittaker 6

Code in Functions

# This is the approach necessary for

# Assignment 2 (and from now on)

def printNumbers(stop) :

for i in range(stop) :

print( i , end=', ')

Slides courtesy of Dr. Alan McLeod

print( i , end=', ')

def main() :

printNumbers(10)

print("\nAll done!")

main()

Winter 2011 CISC101 - Whittaker 7

Code in Classes
# A very simple class with one method

class myClass(object) :

def aMethod(stop) :
for i in range(stop) :

print( i , end=', ')

Slides courtesy of Dr. Alan McLeod

print( i , end=', ')
print("\nAll done!")

def main() :
myClass.aMethod(10)

main()

Winter 2011 CISC101 - Whittaker 8



Modules and Packages

• A module can contain any or all of the following
– Imperative code
– Functions
– Classes

• We’ve actually been building modules

Slides courtesy of Dr. Alan McLeod

• We’ve actually been building modules
– We just didn’t know it!

• A package is a collection of modules

• In CISC101 we will not build classes or packages

Winter 2011 CISC101 - Whittaker 9

Modules and Functions

• Goal: break up code into separate functions
– These are invoked or “called” from main()

• Let’s review what we already know about 
functions

Slides courtesy of Dr. Alan McLeod

• Python already comes with a set of built-in 
functions or BIFs
– What are they and which ones have we been using?

• For more information, consult the Python help docs

Winter 2011 CISC101 - Whittaker 10

66 BIFs

abs() delattr() globals() list() print() sum()

all() dict() hasattr() locals() property() super()

any() dir() hash() map() range() tuple()

ascii() divmode() help() max() repr() type()

bin() enumerate() hex() memoryview() reversed() vars()

bool() eval() id() min() round() zip()

Slides courtesy of Dr. Alan McLeod

bool() eval() id() min() round() zip()

bytearray() exec() input() next() set()

bytes() filter() int() object() setattr()

chr() float() isinstance() oct() slice()
classmethod() format() issubclass() open() sorted()

compile() frozenset() iter() ord() staticmethod()

complex() getattr() len() pow() str()

Winter 2011 CISC101 - Whittaker 11

66 BIFs – The Ones We Use Often

abs() delattr() globals() list() print() sum()

all() dict() hasattr() locals() property() super()

any() dir() hash() map() range() tuple()

ascii() divmode() help() max() repr() type()

bin() enumerate() hex() memoryview() reversed() vars()

bool() eval() id() min() round() zip()

Slides courtesy of Dr. Alan McLeod

bool() eval() id() min() round() zip()

bytearray() exec() input() next() set()

bytes() filter() int() object() setattr()

chr() float() isinstance() oct() slice()
classmethod() format() issubclass() open() sorted()

compile() frozenset() iter() ord() staticmethod()

complex() getattr() len() pow() str()

Winter 2011 CISC101 - Whittaker 12



All The BIFs We Have Used

abs() delattr() globals() list() print() sum()

all() dict() hasattr() locals() property() super()

any() dir() hash() map() range() tuple()

ascii() divmode() help() max() repr() type()

bin() enumerate() hex() memoryview() reversed() vars()

bool() eval() id() min() round() zip()

Slides courtesy of Dr. Alan McLeod

bool() eval() id() min() round() zip()

bytearray() exec() input() next() set()

bytes() filter() int() object() setattr()

chr() float() isinstance() oct() slice()
classmethod() format() issubclass() open() sorted()

compile() frozenset() iter() ord() staticmethod()

complex() getattr() len() pow() str()

Winter 2011 CISC101 - Whittaker 13

A Few More We Are Going to Use…

abs() delattr() globals() list() print() sum()

all() dict() hasattr() locals() property() super()

any() dir() hash() map() range() tuple()

ascii() divmode() help() max() repr() type()

bin() enumerate() hex() memoryview() reversed() vars()

bool() eval() id() min() round() zip()

Slides courtesy of Dr. Alan McLeod

bool() eval() id() min() round() zip()

bytearray() exec() input() next() set()

bytes() filter() int() object() setattr()

chr() float() isinstance() oct() slice()
classmethod() format() issubclass() open() sorted()

compile() frozenset() iter() ord() staticmethod()

complex() getattr() len() pow() str()

Winter 2011 CISC101 - Whittaker 14

Functions and Methods

• A method belongs to, or is a member of a class
– A method is defined within a class
– A method must be invoked by naming the class (or 

object) that owns the method
– e.g., aString.format(…) is a string method

• A function belongs to a module

Slides courtesy of Dr. Alan McLeod

• A function belongs to a module
– A function is not defined in a class
– A function is invoked directly
– e.g., any function you have defined thus far

Winter 2011 CISC101 - Whittaker 15

Module Functions

• Just in case we don’t have enough BIFs, you can 
always get more from other modules.

• We have used the math and the random modules 
to obtain other functions

Slides courtesy of Dr. Alan McLeod

math.sqrt(…)

random.randInt(…)

Winter 2011 CISC101 - Whittaker 16



Module Functions - Cont.

• You have to tell the interpreter when you wish to 
use a function in a module
– You need to import the module

import math

• What if you don’t want to include the module 

Slides courtesy of Dr. Alan McLeod

• What if you don’t want to include the module 
name every time you use the function?
– It would be nice to just call sqrt() rather than 

math.sqrt(…)

– Solution: use a different kind of import statement

from math import *

Winter 2011 CISC101 - Whittaker 17

Module Functions - Cont.

• Using from math import * means you can 
invoke any of the math functions directly
– sqrt(2) instead of math.sqrt(2)

• What if you just want one function from a module?

Slides courtesy of Dr. Alan McLeod

– Such as the sqrt() function

from math import sqrt

Winter 2011 CISC101 - Whittaker 18

• Function header syntax:

def function_name( parameter_list) :

• Use the normal naming rules for 
function_name

• parameter_list provides a mechanism for 

Writing Functions

Slides courtesy of Dr. Alan McLeod

• parameter_list provides a mechanism for 
getting values into your function
– But it’s optional

• The return keyword can be used to send a 
value out of a function
– But it’s optional

Winter 2011 CISC101 - Whittaker 19

Parameters and Arguments

• Invoke functions with zero or more arguments
– Values for the function’s parameters

• “Parameter” and “argument” are often used interchangeably

• Arguments are separated by commas and can be
– Literal values
– Variables

Slides courtesy of Dr. Alan McLeod

– Variables
– Expressions

• Variables and expressions are evaluated first
– Determine the resulting value before invoking
– Feed it into the function

Winter 2011 CISC101 - Whittaker 20



A Function with Parameters

Here is a (useless) function that displays the larger 
of two numbers

def showHighest(num1, num2) :

if num1 > num2 :

Slides courtesy of Dr. Alan McLeod

if num1 > num2 :

print(num1, "is higher.")

else :

print(num2, "is higher.")

Winter 2011 CISC101 - Whittaker 21

A Function with Parameters - Cont.

• When you invoke this (useless) function, you 
need to supply two things for the parameters
– You supply two numbers as arguments

showHighest(3.4, 6.7)

• The code in showHighest (…) runs and the 

Slides courtesy of Dr. Alan McLeod

• The code in showHighest (…) runs and the 
larger number is displayed

• Within showHighest(…)
– num1 has the value 3.4

– num2 has the value 6.7

Winter 2011 CISC101 - Whittaker 22

A Function with Parameters - Cont.

• To put it another way …

• The positional arguments 3.4 and 6.7 have 
been mapped into the parameters num1 and 
num2

Slides courtesy of Dr. Alan McLeod

• num1 and num2 are variables that have been 
created in the function’s parameter list and are 
local to the function

Winter 2011 CISC101 - Whittaker 23

Preview: Keyword Arguments

• We’ve usually invoked functions using positional 
arguments
– This is the typical approach to arguments shown on the 

previous slides
– e.g., print("Hello", "Alan”)

• We’ve also invoked print(…) like so

Slides courtesy of Dr. Alan McLeod

• We’ve also invoked print(…) like so
print("Hello", "Alan", sep="\n")

• The sep="\n" thing is called a keyword 
argument
– We will learn more about keyword arguments and 

default arguments shortly

Winter 2011 CISC101 - Whittaker 24



Functions Returning a Value

• A function may return something
– The “something” can be any Python type

• A str , an int , a float , etc.

• Functions that don’t return anything are 
sometimes called procedures
– Like print() , for example

Slides courtesy of Dr. Alan McLeod

– Like print() , for example

• We routinely use functions that return something
– input()

– float()

– int()

– …

Winter 2011 CISC101 - Whittaker 25

Functions Returning a Value – Cont.

• How can showHighest(…) be changed to return 
the highest number instead of printing it out?
– It is rather tacky to have functions print things instead of 

returning them

def showHighest (num1, num2) :

Slides courtesy of Dr. Alan McLeod

def showHighest (num1, num2) :

if num1 > num2 :

return num1

else :

return num2

Winter 2011 CISC101 - Whittaker 26

Functions Returning a Value - Cont.

Alternatively, 

def showHighest(num1, num2) :

if num1 > num2 :

return num1

Slides courtesy of Dr. Alan McLeod

return num1

return num2

This works and is more efficient!

Winter 2011 CISC101 - Whittaker 27

Returning Values

• You can have as many return statements as 
you want in a function

• If you don’t have a return statement, then your 
function does not return anything
– It is invoked without expecting any value to come out of 

the function

Slides courtesy of Dr. Alan McLeod

the function
• No assignment required when invoking

• Execution of a function stops as soon as you 
execute the return statement, even if there is 
code after the return statement

Winter 2011 CISC101 - Whittaker 28



Returning Multiple Values

• You can return more than one value with a single 
return statement!

• Consider another useless program that returns 
two numbers in order

Slides courtesy of Dr. Alan McLeod

def orderNums(num1, num2) :

if num1 > num2 :

return num2, num1

return num1, num2

Winter 2011 CISC101 - Whittaker 29

Returning Multiple Values – Cont.

• Returning multiple values is not really returning 
multiple values

• The function is actually returning a single tuple
• How can we extract the two returned values from 

the tuple?

Slides courtesy of Dr. Alan McLeod

x1, x2 = orderNums(15, 7)

print(x1, "comes before", x2)

Winter 2011 CISC101 - Whittaker 30

The Advantages of Functions

• Each function is a building block for your program

• Construction, testing and design is easier
• Functions avoid code duplication
• Functions make re-use of your code more likely

Slides courtesy of Dr. Alan McLeod

• Functions make re-use of your code more likely
• Well-written functions reduce the need for 

extensive comments

Winter 2011 CISC101 - Whittaker 31

Designing a Function

• A function should only do one thing
– If you describe the function and need to use the word 

“and”, then it is probably doing more than one thing

• Try to keep the parameter list as short as possible
• The function itself should be short

Slides courtesy of Dr. Alan McLeod

– In the range of 1 to 15 lines, ideally
– Not larger than can be displayed on the screen

• Functions can be declared inside other functions
– Known as nested functions
– Avoid unless you have a good reason!

Winter 2011 CISC101 - Whittaker 32



Designing a Function - Cont.

• Try to get your function to return something rather 
than print something
– Trust your console I/O to a function like main()

• By convention, main() should always be the 
starting point of your program

• We will discuss some additional topics shortly that 

Slides courtesy of Dr. Alan McLeod

• We will discuss some additional topics shortly that 
will make your functions easier to write and use
– Default arguments
– Keyword parameters
– Raising exceptions
– Checking argument types

Winter 2011 CISC101 - Whittaker 33

Designing a Function - Cont.

• Choose descriptive function and parameter names
– It should be obvious what the function is doing

• If you only need to add a bit more code to make 
your function more universally applicable – do it!

• Be prepared to re-structure a working program to 

Slides courtesy of Dr. Alan McLeod

get a better design
• Try to always check all your parameter values for 

legality
– Later: raise an exception when they are illegal

• Add a doc string to every function except main()

Winter 2011 CISC101 - Whittaker 34

Designing Programs With Functions

• Start with a functional decomposition of the 
problem
– Write the function headers and add parameters
– Use the pass statement as the body
– Put the return value(s) in a comment initially

• Make sure each function does one thing only

Slides courtesy of Dr. Alan McLeod

• Make sure each function does one thing only
• You may find a need for additional functions as 

you fill in the code for each function
• Don’t be afraid to further decompose a function if 

it is getting too big or doing too many things

Winter 2011 CISC101 - Whittaker 35

The Game of Nim

• Or, one of the many variations on Nim
• User plays against the computer
• Take turns removing marbles from a pile

– May remove between 1 and half of the remaining 
marbles

Slides courtesy of Dr. Alan McLeod

• Winner leaves one marble in the pile
• Many values are randomly chosen

– Number of marbles initially in the pile
– Who get to go first
– Number of marbles are removed by the computer

Winter 2011 CISC101 - Whittaker 36



Demos - Game of Nim

• Two versions
– Single function (all in main() )

– Multi-function

• The multi-function version has more lines
• The single-function version has more indentation

Slides courtesy of Dr. Alan McLeod

• The single-function version has more indentation
• The single-function version has nested loops

– The multi-function version does not!

• Which do you prefer?
• Which would be easier to add features to?

Winter 2011 CISC101 - Whittaker 37

Testing and Debugging

• You can choose to test one function at a time
– Add temporary code to main() to invoke your test 

function with test values
• Display the return value(s)

– You know that any failures are from the function 
currently being tested, not elsewhere

Slides courtesy of Dr. Alan McLeod

currently being tested, not elsewhere

• Small functions are much easier to debug
– It’s difficult to test a single, large function

Winter 2011 CISC101 - Whittaker 38

You Decide!

• Multi-function PROs
– Easier to design
– Easier to construct
– Easier to read
– Requires fewer comments
– Easier to test and fix

Slides courtesy of Dr. Alan McLeod

– Easier to test and fix
– Easier to re-use

• CONs
– Longer
– Slower?  (not much…)

Winter 2011 CISC101 - Whittaker 39

Variable Scope

• A variable created inside a function is known 
inside that function
– These variables are called local variables

• A variable created at the same level as the 
function headers is known everywhere in the 

Slides courtesy of Dr. Alan McLeod

function headers is known everywhere in the 
program
– These variables are called global variables

• What do I mean by “known”?

Winter 2011 CISC101 - Whittaker 40



Variable Scope – Cont.

• A variable’s scope is the part of the program 
where its value can be used
– Local variables: inside its function

• And any other functions or statements nested in that function

– Global variables: everywhere

• Changing the value for a global variable in a 

Slides courtesy of Dr. Alan McLeod

• Changing the value for a global variable in a 
function requires an extra step
– “Re-declare” it using the global keyword

Global Variables
• The problem with globals is that any function can 

mess with them
– It is easy to lose track of how they are being used

• Global variables violate the principle of functional 
isolation!

• Two simple rules

Slides courtesy of Dr. Alan McLeod

• Two simple rules
– Don’t declare global variables unless the vast majority 

of your functions will use this variable
• You must think your code will be significantly easier to work 

with and read as a result

– You can declare constants as global variables
• The constant’s variable name should be in all uppercase

Winter 2011 CISC101 - Whittaker 42

Keyword Arguments

• Suppose you have a function with several 
parameters, but you don’t want to worry about 
supplying values in the matching order

• You can use keyword arguments to supply the 

Slides courtesy of Dr. Alan McLeod

arguments in any order with the syntax:
parameter_name = argument

• Demo: KeywordArguments.py

Winter 2011 CISC101 - Whittaker 43

Keyword Arguments - Cont.

• All positional arguments must come before 
keyword arguments

• After that, the keyword arguments can be in any 
order

Slides courtesy of Dr. Alan McLeod

• Unless the function has default arguments you 
must still supply arguments for each parameter

Winter 2011 CISC101 - Whittaker 44



Default Arguments

• Can make it optional for the user to supply all the 
arguments
– Functions become much more flexible

• You do this by creating default arguments in your 
function definition statement

• Default arguments must come after all positional 

Slides courtesy of Dr. Alan McLeod

• Default arguments must come after all positional 
parameters

• The same syntax as for keyword arguments, but 
used in the def line instead of the invoking line

• Demo: DefaultArguments.py

Winter 2011 CISC101 - Whittaker 45

Default Arguments - Cont.

• You must decide which parameters are optional
– If any

• You must make assumptions to come up with 
values for those optional parameters

• Supplying an argument value for a default 

Slides courtesy of Dr. Alan McLeod

argument replaces the default value
• Reduces the need for multiple versions of the 

same function

Winter 2011 CISC101 - Whittaker 46

Naming Things
• Applies to naming parameters, functions, methods 

and classes

• The name should reveal the intention of what it is 
you are naming
– You should not need to add a comment to a variable 

Slides courtesy of Dr. Alan McLeod

– You should not need to add a comment to a variable 
declaration to provide further explanation

– A comment is OK if you want to record the units of the 
variable or if you need to explain the initial value

Winter 2011 CISC101 - Whittaker 47

Naming Things - Cont.

• Avoid Disinformation
– Avoid using words that might have multiple meanings

• Make Meaningful Distinctions
– Don’t use artificial means of distinguishing similar 

names (e.g., account0 or account1 )

Slides courtesy of Dr. Alan McLeod

names (e.g., account0 or account1 )

• Use Pronounceable Names
– It is easier for our brains to remember a variable name 

if it is pronounceable

Winter 2011 CISC101 - Whittaker 48



Naming Things - Cont.

• Use Searchable Names
– Single or even two-letter variable names will be difficult 

to locate using a text search
– If a loop counter has no intrinsic meaning then it is OK 

to use i , j and k (but not l !!!) as loop counters

• Avoid Encodings

Slides courtesy of Dr. Alan McLeod

• Avoid Encodings
– Do not use a prefix or suffix to indicate the type or 

membership of a variable

• Use One Word per Concept
– For example don’t use all of the terms “manager”, 

“controller” and “driver” – what is the difference?

Winter 2011 CISC101 - Whittaker 49

Misc. Style Rules

• Define main() at the top or end of your program
– Don’t do it in the middle!

• Use one import statement per line

• Put import statements before globals but after 

Slides courtesy of Dr. Alan McLeod

• Put import statements before globals but after 
block comments and module-level doc strings.

• There is a big set of additional rules for doc 
strings themselves that I won’t get into here …

Winter 2011 CISC101 - Whittaker 50

Google Python Style Guide

http://google-styleguide.googlecode

.com/svn/trunk/pyguide.html

Slides courtesy of Dr. Alan McLeod

Winter 2011 CISC101 - Whittaker 51

What is an Exception?

What do you see if you try something like this?

print(int(“Hello!”))

>>> print ( int ( "Hello" ))

Traceback (most recent call last):

Slides courtesy of Dr. Alan McLeod

Traceback (most recent call last):

File "<pyshell#0>", line 1, in <module>

print(int("Hello"))

ValueError: invalid literal for int() with base 10:  
'Hello'

Winter 2011 CISC101 - Whittaker 52



What is an Exception? - Cont.

• A syntax error is what you get when your syntax 
cannot be recognized by the interpreter

• All other errors occur when your code is running
– An exception is a run-time error

• Every run-time error in Python has a name

Slides courtesy of Dr. Alan McLeod

– This is the type of the exception

• For a list of exception types see Chapter 6 in the 
Python Standard Library documentation

• The example on the previous slide was a 
“ValueError” exception

Winter 2011 CISC101 - Whittaker 53

Crash Prevention!

• Normally an exception is what you see when your  
program has crashed from a fatal error

• Better programs catch exceptions before this 
happens!

Slides courtesy of Dr. Alan McLeod

• This gives you a chance to fix the problem.

• You catch exceptions using try-except
statements

Winter 2011 CISC101 - Whittaker 54

Catching Exceptions

Syntax for a simple try-except statement

try :

try_statements

except Exception :

Give this a shot …

but if this error occurs …

Slides courtesy of Dr. Alan McLeod

except Exception :

except_statements

Winter 2011 CISC101 - Whittaker 55

but if this error occurs …

don’t crash and do this 

Catching Exceptions - Cont.

• Exception
– The name of the exception you are catching

• try_statements

– A section of code that could generate a run-time error
– The code here stops as soon as there is an error

Slides courtesy of Dr. Alan McLeod

• except_statements

– The code that will execute if the exception is generated

Winter 2011 CISC101 - Whittaker 56



Catching Exceptions - Cont.

• How do you know which exception(s) to catch?
– There’s no easy answer to this question

• Observe the error generated and get the name of 
the exception from the traceback listing

Slides courtesy of Dr. Alan McLeod

• … or look in the Python docs

Winter 2011 CISC101 - Whittaker 57

Catching More Than One Exception

• Suppose your code could generate more than one 
kind of exception?

• You can be prepared to catch more than one!

try :

try_statements

Slides courtesy of Dr. Alan McLeod

try_statements

except Exception1:

except_statements
except Exception2 :

except_statements

…

Winter 2011 CISC101 - Whittaker 58

Demo: Robust Input

• Until now, we have had to assume the user enters 
a number when we tell him to
– Very trusting of us …

• Now we don’t have to

Slides courtesy of Dr. Alan McLeod

– He or she can be an idiot and our input won’t crash

• Demo: MoreRobust.py

Winter 2011 CISC101 - Whittaker 59

Prevent or Catch?

• Sometimes it should not be necessary to catch 
exceptions

• You should prevent them from happening in the 
first place by using preventative code

Slides courtesy of Dr. Alan McLeod

• Demo: WhichIsBetter.py

Winter 2011 CISC101 - Whittaker 60


