
CISC101 Reminders & Notes

• Test 3 this week in tutorial

• USATs at the beginning of next lecture
– Please attend and fill out an evaluation

• School of Computing First Year Information Session
– Thursday, March 24th from 5:30-7:00PM

Slides courtesy of Dr. Alan McLeod

– Thursday, March 24th from 5:30-7:00PM
– Goodwin Hall, Room 254

• Overview of programs including Computing and the Arts,
Biomedical Computing, Cognitive Science and Software Design

• Remaining lecture topics have shifted
– May not cover GUIs or other Python modules in-depth

Winter 2011 CISC101 - Whittaker 1

Today

• From last time …
– Finding minimums and maximums

• Slides 31-37

– Timing code execution
• Slides 38-42

• Sequential Search

Slides courtesy of Dr. Alan McLeod

• Sequential Search
• Binary Search
• Selection Sort (likely …)
• Insertion Sort (perhaps …)

Winter 2011 CISC101 - Whittaker 2

Searching in Python

• We already have searching methods as well as
the keywords in and not in
– count(…) and index(…) for lists
– find(…) , count(…) and index(…) for strings

• A search could return different results

Slides courtesy of Dr. Alan McLeod

– A count of occurrences
– True or False

– Just the location of the first match

• So, why do we need to write our own searching
functions?

Winter 2011 CISC101 - Whittaker 3

Searching in Python - Cont.

• You might need to search datasets in a
programming language that does not have these
methods or functions built-in

• Your dataset structure might not be amenable for

Slides courtesy of Dr. Alan McLeod

use with the built-in methods

• So, you need to know these algorithms!

Winter 2011 CISC101 - Whittaker 4

Sequential Search

• Sequential search pseudocode

• Loop through the dataset starting at the first element until
the value of the target matches one of the elements

• Return the location of the match

Slides courtesy of Dr. Alan McLeod

• If a match is not found, raise ValueError

• Note that the aList.index(…) method also
throws a ValueError exception if the value is not
located

Winter 2011 CISC101 - Whittaker 5

Sequential Search - Cont.

def sequentialSearch(numsList, target) :

i = 0

size = len(numsList)

while i < size :

if numsList [i] == target :

Slides courtesy of Dr. Alan McLeod

if numsList [i] == target :

return i

i = i + 1

raise ValueError("Target not found.")

Note how len(numsList) is done outside loop

Winter 2011 CISC101 - Whittaker 6

Sequential Search -Version 2

def sequentialSearch2(numsList, target) :

for i in range(len(numsList)) :

if numsList[i] == target :

return i

raise ValueError("Target not found.")

Slides courtesy of Dr. Alan McLeod

Uses our trusty for loop, but is it faster?

Winter 2011 CISC101 - Whittaker 7

Timing Our Search

• Demo: TimingSeqSearch.py

• Note how the exception is raised and caught

• The farther the target is from the beginning of the
dataset, the longer the search takes

Slides courtesy of Dr. Alan McLeod

dataset, the longer the search takes
– Makes sense!

• Our fastest sequential search is still 2X slower
than aList.index(…)

– Why?

Winter 2011 CISC101 - Whittaker 8

Other Search Return Values

• True if a match exists and False otherwise

• A count of how many values match
• A list of locations that match

– Not built-in to Python

• The location of the match searching from the end

Slides courtesy of Dr. Alan McLeod

• The location of the match searching from the end
of the list, not the beginning

Winter 2011 CISC101 - Whittaker 9

Searching an Ordered Dataset

• How do you find a name in a telephone book?

• How do you find a word in a dictionary?

• In the Week 5 lab, Exercise 3 involved coding a
number guessing game

Slides courtesy of Dr. Alan McLeod

number guessing game
– What is the most effective way of guessing the

unknown number?

Winter 2011 CISC101 - Whittaker 10

Binary Search

• Binary search pseudocode
– Only works on ordered sets

a) Locate the midpoint of dataset to search
• Test the midpoint to see if it matches

b) Determine if target is in lower half or upper half of

Slides courtesy of Dr. Alan McLeod

b) Determine if target is in lower half or upper half of
the dataset
• If in lower half, make that half the dataset to search
• If in upper half, make that half the dataset to search
• Loop back to step a) unless you’ve exhausted all the

possible values
• Raise a ValueError exception

Winter 2011 CISC101 - Whittaker 11

Binary Search – Cont.

def binarySearch(numsList, target):
low = 0
high = len(numsList) - 1
while low <= high :

mid = (low + high) // 2
if target < numsList[mid]:

high = mid - 1

Slides courtesy of Dr. Alan McLeod

high = mid - 1
elif target > numsList[mid]:

low = mid + 1
else:

return mid
raise ValueError("Target not found.")

Winter 2011 CISC101 - Whittaker 12

Binary Search – Cont.

• What is the best case?
– The element matches right at the middle of the dataset,

and the loop only executes once

• What is the worst case?
– target will not be found and the maximum number of

iterations will occur

Slides courtesy of Dr. Alan McLeod

iterations will occur

• Note that the loop will execute until there is only
one element left that does not match

• Each time through the loop the number of
elements left is halved

Winter 2011 CISC101 - Whittaker 13

Binary Search – Cont.

• Number of elements to be searched (progression)

• The last comparison is for n/2m, when the number
of elements is one (worst case)

m

nnnn
n

2
...,,

2
,

2
,

2
,

32

Slides courtesy of Dr. Alan McLeod

of elements is one (worst case)
– So, n/2m = 1 or n = 2m

– m = log2(n)

• So, the algorithm loops log(n) times in the worst
case

Winter 2011 CISC101 - Whittaker 14

Binary Search - Cont.

• Binary search with log(n) iterations for the worst
case is much better than n iterations for the worst
case with a sequential search!

• Major reason to sort datasets!

Slides courtesy of Dr. Alan McLeod

• Major reason to sort datasets!

Winter 2011 CISC101 - Whittaker 15

Binary Search – Timing

• Demo: TimingBothSearches.py
– Much better time now!

• Does aList.index(…) work any faster with a
sorted(…) list?

• Can aList.index(…) assume the list is sorted

Slides courtesy of Dr. Alan McLeod

and thus switch to a binary search?
• Could aList.index(…) determine if the list is in

order and then switch to binary search?
– How would it do this?

Winter 2011 CISC101 - Whittaker 16

Sorting Overview

• We will look at three simple sorts:
– Selection sort
– Insertion sort
– Bubble sort

Slides courtesy of Dr. Alan McLeod

• We might get a quick peek at Quicksort, but you
will not be responsible for knowing this one

Winter 2011 CISC101 - Whittaker 17

Sorting Overview – Cont.

• The first step in sorting is to select the criteria
used for the sort and the direction of the sort

• It could be ascending numeric order, or alphabetic
order by last name, etc.

Slides courtesy of Dr. Alan McLeod

order by last name, etc.

Winter 2011 CISC101 - Whittaker 18

Choosing a Sorting Algorithm

• How large is the dataset?
• What is critical: memory usage or execution

time?
• Will the algorithm be asked to sort …

– a dataset that is already in order except for a few
newly added elements

Slides courtesy of Dr. Alan McLeod

newly added elements
– a completely disordered dataset?

Winter 2011 CISC101 - Whittaker 19

Comparing Sorting Algorithms

• Sorting algorithms can be compared using …
– the number of comparisons for a dataset of size n
– the number of data movements (“swaps”) necessary
– how these measures change with n

• Complexity analysis!

• Often need to consider these measures for best

Slides courtesy of Dr. Alan McLeod

• Often need to consider these measures for best
case (data almost in order), average case
(random order), and worst case (reverse order)
– Some algorithms behave the same regardless of the

state of the data
– Others do better depending on how well the data is

initially ordered

Winter 2011 CISC101 - Whittaker 20

Comparing Sorting Algorithms – Cont.

• What if you’re sorting simple values like integers?
– Comparisons are easy to carry out
– Keep the number of data movements to a minimum

• What if you’re sorting strings or objects?
– Comparisons are more time-consuming
– Keep the number of comparisons to a minimum

Slides courtesy of Dr. Alan McLeod

– Keep the number of comparisons to a minimum

• The only real measure of what algorithm is the
best is an actual measure of elapsed time
– The initial choice can be based on theory alone
– The final choice for a time-critical application must be

made using actual experimental measurement

Winter 2011 CISC101 - Whittaker 21

Sorting Overview – Cont.

• I will be presenting code samples that sort lists of
integers into ascending order
– This is easiest to understand

• However the logic of the algorithm can be applied
directly to lists of strings or other objects

Slides courtesy of Dr. Alan McLeod

directly to lists of strings or other objects

• Different orders often only require you to change
the comparison

Winter 2011 CISC101 - Whittaker 22

Before We Start …

• You need to learn these algorithms for the same
reasons you needed to learn searching algorithms

• The sort(…) in Python is way faster
– It uses Quicksort, which uses recursion

Slides courtesy of Dr. Alan McLeod

– Both topics our outside the scope of this course but
covered in CISC121

• Even if we coded Quicksort it would still be slower
because of the interpreted vs. compiled issue

Winter 2011 CISC101 - Whittaker 23

Selection Sort

• An “instinctive” sorting approach
– Look for the smallest element in the list
– Put it in at the beginning of the list
– Repeat with the remaining elements as the list

Slides courtesy of Dr. Alan McLeod

• Loop through the array from i=0 to one element
short of the end of the array
– Select the smallest element in the array range from i +

1 to the end of the array
– Swap this value with the value at position i

Winter 2011 CISC101 - Whittaker 24

Swapping Elements

• First, a swap(…) function that will be used by this
and other sorts:

def swap(numsList, pos1, pos2) :

numsList[pos1], numsList[pos2] =

Slides courtesy of Dr. Alan McLeod

numsList[pos1], numsList[pos2] =
numsList[pos2], numsList[pos1]

Alternate:

#temp = numsList[pos1]

#numsList[pos1] = numsList[pos2]

#numsList[pos2] = temp

Winter 2011 CISC101 - Whittaker 25

def selectionSort(numsList):

i = 0

size = len(numsList)

while i < size - 1:

smallestPos = i

j = i + 1

while j < size:

Selection Sort - Cont.

Slides courtesy of Dr. Alan McLeod

while j < size:

if numsList[j] < numsList[smallestPos]:

smallestPos = j

j = j + 1

if smallestPos != i:

swap(numsList, i, smallestPos)

i = i + 1

Winter 2011 CISC101 - Whittaker 26

Aside - Sorting “in situ”

• Our code is sorting the list in place

• Saves the memory (and time) required to create a
copy of the same list in memory

Slides courtesy of Dr. Alan McLeod

• However, this means that once it is sorted, and
since it is passed by reference, it stays sorted!

Winter 2011 CISC101 - Whittaker 27

Insertion Sort

• Another “instinctive” kind of sort
– Start with the first element as a sorted sub-list
– Take the first element from the unsorted sub-list and

find its location in the sorted sub-list
– Shift the sorted elements up and insert the element

Slides courtesy of Dr. Alan McLeod

• Loop through the list from i=1 to size-1, selecting
element temp at position i
– Locate position for temp (position j, where j <= i), and

move all elements above j up one location
– Put temp at position j

Winter 2011 CISC101 - Whittaker 28

def insertionSort(numsList):

for i in range(1, len(numsList)):

temp = numsList[i]

j = i

while j > 0 and temp < numsList [j - 1]:

Insertion Sort - Cont.

Slides courtesy of Dr. Alan McLeod

while j > 0 and temp < numsList [j - 1]:

numsList[j] = numsList[j - 1]

j = j - 1

numsList[j] = temp

Winter 2011 CISC101 - Whittaker 29

• Selection sort is “swap efficient”
• Insertion sort can be efficient for datasets that are

mostly in order

Selection Sort vs. Insertion Sort

Slides courtesy of Dr. Alan McLeod

Winter 2011 CISC101 - Whittaker 30

Sorting Demo

• Demo: SortingTest.py

• How does our sort compare to aList.sort() ?
– Not very well
– How is .sort() so fast?

Slides courtesy of Dr. Alan McLeod

.sort()

• How different are the other two sorts?

Winter 2011 CISC101 - Whittaker 31

Sorting Animations

• For a collection of animation links see:

http://www.hig.no/~algmet/animate.html

• Here are a couple that I liked:

Slides courtesy of Dr. Alan McLeod

http://www.cs.pitt.edu/~kirk/cs1501/

animations/Sort3.html

http://cs.smith.edu/~thiebaut/java/sort/
demo.html

Winter 2011 CISC101 - Whittaker 32

