
CISC101 Reminders & Notes

• Test 3 this week in tutorial

• USATs at the beginning of next lecture
– Please attend and fill out an evaluation

• School of Computing First Year Information Session
– Thursday, March 24th from 5:30-7:00PM
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– Thursday, March 24th from 5:30-7:00PM
– Goodwin Hall, Room 254

• Overview of programs including Computing and the Arts, 
Biomedical Computing, Cognitive Science and Software Design

• Remaining lecture topics have shifted
– May not cover GUIs or other Python modules in-depth
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Today

• From last time …
– Finding minimums and maximums

• Slides 31-37

– Timing code execution
• Slides 38-42

• Sequential Search
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• Sequential Search
• Binary Search
• Selection Sort (likely …)
• Insertion Sort (perhaps …)
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Searching in Python

• We already have searching methods as well as 
the keywords in and not in
– count(…) and index(…) for lists
– find(…) , count(…) and index(…) for strings

• A search could return different results
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– A count of occurrences
– True or False

– Just the location of the first match

• So, why do we need to write our own searching 
functions?
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Searching in Python - Cont.

• You might need to search datasets in a 
programming language that does not have these 
methods or functions built-in

• Your dataset structure might not be amenable for 
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use with the built-in methods

• So, you need to know these algorithms!
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Sequential Search

• Sequential search pseudocode

• Loop through the dataset starting at the first element until 
the value of the target matches one of the elements

• Return the location of the match
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• If a match is not found, raise ValueError

• Note that the aList.index(…) method also 
throws a ValueError exception if the value is not 
located
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Sequential Search - Cont.

def sequentialSearch(numsList, target) :

i = 0

size = len(numsList)

while i < size :

if numsList [ i ] == target :
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if numsList [ i ] == target :

return i

i = i + 1

raise ValueError("Target not found.")

Note how len(numsList) is done outside loop
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Sequential Search -Version 2

def sequentialSearch2(numsList, target) :

for i in range(len(numsList)) :

if numsList[i] == target :

return i

raise ValueError("Target not found.")
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Uses our trusty for loop, but is it faster?

Winter 2011 CISC101 - Whittaker 7

Timing Our Search

• Demo: TimingSeqSearch.py

• Note how the exception is raised and caught

• The farther the target is from the beginning of the 
dataset, the longer the search takes
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dataset, the longer the search takes
– Makes sense!

• Our fastest sequential search is still 2X slower 
than aList.index(…)

– Why?
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Other Search Return Values

• True if a match exists and False otherwise

• A count of how many values match
• A list of locations that match

– Not built-in to Python

• The location of the match searching from the end 
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• The location of the match searching from the end 
of the list, not the beginning
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Searching an Ordered Dataset

• How do you find a name in a telephone book?

• How do you find a word in a dictionary?

• In the Week 5 lab, Exercise 3 involved coding a 
number guessing game
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number guessing game
– What is the most effective way of guessing the 

unknown number?
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Binary Search

• Binary search pseudocode
– Only works on ordered sets

a) Locate the midpoint of dataset to search
• Test the midpoint to see if it matches 

b) Determine if target is in lower half or upper half of 
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b) Determine if target is in lower half or upper half of 
the dataset
• If in lower half, make that half the dataset to search
• If in upper half, make that half the dataset to search
• Loop back to step a) unless you’ve exhausted all the 

possible values
• Raise a ValueError exception
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Binary Search – Cont.

def binarySearch(numsList, target):
low = 0
high = len(numsList) - 1
while low <= high :

mid = (low + high) // 2
if target < numsList[mid]:

high = mid - 1
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high = mid - 1
elif target > numsList[mid]:

low = mid + 1
else:

return mid
raise ValueError("Target not found.")
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Binary Search – Cont.

• What is the best case?
– The element matches right at the middle of the dataset, 

and the loop only executes once

• What is the worst case?
– target will not be found and the maximum number of 

iterations will occur
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iterations will occur

• Note that the loop will execute until there is only 
one element left that does not match

• Each time through the loop the number of 
elements left is halved

Winter 2011 CISC101 - Whittaker 13

Binary Search – Cont.

• Number of elements to be searched (progression)

• The last comparison is for n/2m, when the number 
of elements is one (worst case)
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of elements is one (worst case)
– So, n/2m = 1 or n = 2m

– m = log2(n)

• So, the algorithm loops log(n) times in the worst 
case
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Binary Search - Cont.

• Binary search with log(n) iterations for the worst 
case is much better than n iterations for the worst 
case with a sequential search!

• Major reason to sort datasets!
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• Major reason to sort datasets!
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Binary Search – Timing

• Demo: TimingBothSearches.py
– Much better time now!

• Does aList.index(…) work any faster with a 
sorted(…) list?

• Can aList.index(…) assume the list is sorted 
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and thus switch to a binary search?
• Could aList.index(…) determine if the list is in 

order and then switch to binary search?
– How would it do this?
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Sorting Overview

• We will look at three simple sorts:
– Selection sort
– Insertion sort
– Bubble sort
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• We might get a quick peek at Quicksort, but you 
will not be responsible for knowing this one
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Sorting Overview – Cont.

• The first step in sorting is to select the criteria 
used for the sort and the direction of the sort

• It could be ascending numeric order, or alphabetic 
order by last name, etc.
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order by last name, etc.
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Choosing a Sorting Algorithm

• How large is the dataset?
• What is critical: memory usage or execution 

time?
• Will the algorithm be asked to sort …

– a dataset that is already in order except for a few 
newly added elements
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newly added elements
– a completely disordered dataset?
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Comparing Sorting Algorithms

• Sorting algorithms can be compared using …
– the number of comparisons for a dataset of size n
– the number of data movements (“swaps”) necessary
– how these measures change with n

• Complexity analysis!

• Often need to consider these measures for best 
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• Often need to consider these measures for best 
case (data almost in order), average case
(random order), and worst case (reverse order)
– Some algorithms behave the same regardless of the 

state of the data
– Others do better depending on how well the data is 

initially ordered
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Comparing Sorting Algorithms – Cont.

• What if you’re sorting simple values like integers?
– Comparisons are easy to carry out
– Keep the number of data movements to a minimum

• What if you’re sorting strings or objects?
– Comparisons are more time-consuming
– Keep the number of comparisons to a minimum
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– Keep the number of comparisons to a minimum

• The only real measure of what algorithm is the 
best is an actual measure of elapsed time
– The initial choice can be based on theory alone
– The final choice for a time-critical application must be 

made using actual experimental measurement
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Sorting Overview – Cont.

• I will be presenting code samples that sort lists of 
integers into ascending order
– This is easiest to understand

• However the logic of the algorithm can be applied 
directly to lists of strings or other objects
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directly to lists of strings or other objects

• Different orders often only require you to change 
the comparison
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Before We Start …

• You need to learn these algorithms for the same 
reasons you needed to learn searching algorithms

• The sort(…) in Python is way faster
– It uses Quicksort, which uses recursion
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– Both topics our outside the scope of this course but 
covered in CISC121

• Even if we coded Quicksort it would still be slower 
because of the interpreted vs. compiled issue
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Selection Sort

• An “instinctive” sorting approach
– Look for the smallest element in the list
– Put it in at the beginning of the list
– Repeat with the remaining elements as the list
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• Loop through the array from i=0 to one element 
short of the end of the array
– Select the smallest element in the array range from i + 

1 to the end of the array
– Swap this value with the value at position i
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Swapping Elements

• First, a swap(…) function that will be used by this 
and other sorts:

def swap(numsList, pos1, pos2) :

numsList[pos1], numsList[pos2] = 
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numsList[pos1], numsList[pos2] = 
numsList[pos2], numsList[pos1]

# Alternate:

#temp = numsList[pos1]

#numsList[pos1] = numsList[pos2]

#numsList[pos2] = temp
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def selectionSort(numsList):

i = 0

size = len(numsList)

while i < size - 1:

smallestPos = i

j = i + 1

while j < size:

Selection Sort - Cont.
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while j < size:

if numsList[j] < numsList[smallestPos]:

smallestPos = j

j = j + 1

if smallestPos != i:

swap(numsList, i, smallestPos)

i = i + 1
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Aside - Sorting “in situ”

• Our code is sorting the list in place

• Saves the memory (and time) required to create a 
copy of the same list in memory
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• However, this means that once it is sorted, and 
since it is passed by reference, it stays sorted!
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Insertion Sort

• Another “instinctive” kind of sort
– Start with the first element as a sorted sub-list
– Take the first element from the unsorted sub-list and 

find its location in the sorted sub-list
– Shift the sorted elements up and insert the element
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• Loop through the list from i=1 to size-1, selecting 
element temp at position i
– Locate position for temp (position j, where j <= i), and 

move all elements above j up one location
– Put temp at position j
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def insertionSort(numsList):

for i in range(1, len(numsList)):

temp = numsList[i]

j = i

while j > 0 and temp < numsList [j - 1]:

Insertion Sort - Cont.
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while j > 0 and temp < numsList [j - 1]:

numsList[j] = numsList[j - 1]

j = j - 1

numsList[j] = temp
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• Selection sort is “swap efficient”
• Insertion sort can be efficient for datasets that are 

mostly in order

Selection Sort vs. Insertion Sort
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Sorting Demo

• Demo: SortingTest.py

• How does our sort compare to aList.sort() ?
– Not very well
– How is .sort() so fast?
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.sort()

• How different are the other two sorts?
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Sorting Animations

• For a collection of animation links see:

http://www.hig.no/~algmet/animate.html

• Here are a couple that I liked:

Slides courtesy of Dr. Alan McLeod

http://www.cs.pitt.edu/~kirk/cs1501/

animations/Sort3.html

http://cs.smith.edu/~thiebaut/java/sort/
demo.html
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